期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Web mining based on chaotic social evolutionary programming algorithm
1
作者 Xie Bin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第6期1272-1276,共5页
With an aim to the fact that the K-means clustering algorithm usually ends in local optimization and is hard to harvest global optimization, a new web clustering method is presented based on the chaotic social evoluti... With an aim to the fact that the K-means clustering algorithm usually ends in local optimization and is hard to harvest global optimization, a new web clustering method is presented based on the chaotic social evolutionary programming (CSEP) algorithm. This method brings up the manner of that a cognitive agent inherits a paradigm in clustering to enable the cognitive agent to acquire a chaotic mutation operator in the betrayal. As proven in the experiment, this method can not only effectively increase web clustering efficiency, but it can also practically improve the precision of web clustering. 展开更多
关键词 web clustering chaotic social evolutionary programming k-means algorithm
在线阅读 下载PDF
基于蚁群K均值聚类算法的边坡稳定性分析 被引量:5
2
作者 刘星 毕奇龙 郑付刚 《水电能源科学》 北大核心 2010年第8期108-109,169,共3页
针对岩石边坡稳定分析中常规聚类算法存在收敛速度慢、易陷入局部最优的局限性,基于蚁群信息素的K均值聚类法,提出一种解决边坡稳定性的新方法,分析了三峡库区36个边坡数据资料,并结合工程类比综合判断了边坡的稳定状态。结果表明,该法... 针对岩石边坡稳定分析中常规聚类算法存在收敛速度慢、易陷入局部最优的局限性,基于蚁群信息素的K均值聚类法,提出一种解决边坡稳定性的新方法,分析了三峡库区36个边坡数据资料,并结合工程类比综合判断了边坡的稳定状态。结果表明,该法的聚类效果优于常规聚类法,计算效率高,为边坡稳定性分级的聚类分析评价提供了新途径。 展开更多
关键词 蚁群 均值聚类算法 边坡稳定性分析 Clustering algorithm k-means Ant Based Slope Stability 边坡稳定性分级 聚类法 边坡稳定分析 综合判断 稳定状态 数据资料 收敛速度 三峡库区 局部最优 计算效率 工程类比 分析评价
在线阅读 下载PDF
基于CSD-ELM的不平衡数据分类算法 被引量:6
3
作者 王大飞 解武杰 董文瀚 《计算机工程》 CAS CSCD 北大核心 2019年第11期54-61,共8页
基于代价敏感学习的极限学习机(ELM)算法在处理不平衡数据分类问题时,未考虑不同类别样本的分布特点以及同一类别中各样本的重要性对分类结果的影响。为此,提出基于样本数量比例的错分惩罚因子设置方法,并基于Mini-batch k-means聚类与... 基于代价敏感学习的极限学习机(ELM)算法在处理不平衡数据分类问题时,未考虑不同类别样本的分布特点以及同一类别中各样本的重要性对分类结果的影响。为此,提出基于样本数量比例的错分惩罚因子设置方法,并基于Mini-batch k-means聚类与距离测度设计一种类内样本权值确定方案。在此基础上,构建区分正、负类别的隐含层输出矩阵,根据训练样本数与ELM隐含层节点数间的关系,分2种情况计算ELM隐含层与输出层间的连接权值,以降低算法的时间复杂度。实验结果表明,与ELM、WELM等算法相比,该算法的G-mean、F1分类性能指标值均较高。 展开更多
关键词 不平衡数据 极限学习机 代价敏感学习 mini-batch k-means聚类 约束优化理论
在线阅读 下载PDF
Multi-scale traffic vehicle detection based on faster ReCNN with NAS optimization and feature enrichment 被引量:18
4
作者 Ji-qing Luo Hu-sheng Fang +2 位作者 Fa-ming Shao Yue Zhong Xia Hua 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第4期1542-1554,共13页
It well known that vehicle detection is an important component of the field of object detection.However,the environment of vehicle detection is particularly sophisticated in practical processes.It is comparatively dif... It well known that vehicle detection is an important component of the field of object detection.However,the environment of vehicle detection is particularly sophisticated in practical processes.It is comparatively difficult to detect vehicles of various scales in traffic scene images,because the vehicles partially obscured by green belts,roadblocks or other vehicles,as well as influence of some low illumination weather.In this paper,we present a model based on Faster ReCNN with NAS optimization and feature enrichment to realize the effective detection of multi-scale vehicle targets in traffic scenes.First,we proposed a Retinex-based image adaptive correction algorithm(RIAC)to enhance the traffic images in the dataset to reduce the influence of shadow and illumination,and improve the image quality.Second,in order to improve the feature expression of the backbone network,we conducted Neural Architecture Search(NAS)on the backbone network used for feature extraction of Faster ReCNN to generate the optimal cross-layer connection to extract multi-layer features more effectively.Third,we used the object Feature Enrichment that combines the multi-layer feature information and the context information of the last layer after cross-layer connection to enrich the information of vehicle targets,and improve the robustness of the model for challenging targets such as small scale and severe occlusion.In the implementation of the model,K-means clustering algorithm was used to select the suitable anchor size for our dataset to improve the convergence speed of the model.Our model has been trained and tested on the UN-DETRAC dataset,and the obtained results indicate that our method has art-of-state detection performance. 展开更多
关键词 Neural architecture search Feature enrichment Faster R-CNN Retinex-based image adaptive correction algorithm k-means UN-DETRAC
在线阅读 下载PDF
K-DSA for the multiple traveling salesman problem 被引量:1
5
作者 TONG Sheng QU Hong XUE Junjie 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第6期1614-1625,共12页
Aimed at a multiple traveling salesman problem(MTSP)with multiple depots and closed paths,this paper proposes a k-means clustering donkey and a smuggler algorithm(KDSA).The algorithm first uses the k-means clustering ... Aimed at a multiple traveling salesman problem(MTSP)with multiple depots and closed paths,this paper proposes a k-means clustering donkey and a smuggler algorithm(KDSA).The algorithm first uses the k-means clustering method to divide all cities into several categories based on the center of various samples;the large-scale MTSP is divided into multiple separate traveling salesman problems(TSPs),and the TSP is solved through the DSA.The proposed algorithm adopts a solution strategy of clustering first and then carrying out,which can not only greatly reduce the search space of the algorithm but also make the search space more fully explored so that the optimal solution of the problem can be more quickly obtained.The experimental results from solving several test cases in the TSPLIB database show that compared with other related intelligent algorithms,the K-DSA has good solving performance and computational efficiency in MTSPs of different scales,especially with large-scale MTSP and when the convergence speed is faster;thus,the advantages of this algorithm are more obvious compared to other algorithms. 展开更多
关键词 k-means clustering donkey and smuggler algorithm(DSA) multiple traveling salesman problem(MTSP) multiple depots and closed paths.
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部