In this study,Schwertmannite,Akaganéite and ammoniojarosite were biosynthesized by different bacteria and characterized.The results showed that bacteria are critical in mediating the mineral formation process:the...In this study,Schwertmannite,Akaganéite and ammoniojarosite were biosynthesized by different bacteria and characterized.The results showed that bacteria are critical in mediating the mineral formation process:the morphology,crystallinity,grain size and specific surface area of each mineral varied upon different bacteria and culturing conditions.In addition,the formed minerals’elemental composition and group disparity lead to different morphology,crystallinity and subsequent adsorption performance.In particular,adsorption difference existed in iron minerals biosynthesized by different bacteria.The maximal adsorption capacities of Akaganéite,Schwertmannite and ammoniojarosite were 26.6 mg/g,17.5 mg/g and 3.90 mg/g respectively.Cr(VI)adsorption on iron-minerals involves hydrogen bonding,electrostatic interaction,and ligand exchange.The adsorption only occurred on the surface of ammoniojarosite,while for Akaganéite and Schwertmannite,the tunnel structure greatly facilitated the adsorption process and improved adsorption capacity.Thus,the molecular structure is the primary determining factor for adsorption performance.Collectively,the results can provide useful information in selecting suitable bacteria for synthesizing heavy-metal scavenging minerals according to different environmental conditions.展开更多
A severe Asian Dust Storm(ADS)event occurred on April 16-17th,2006 in northem China.Mineral components of dust samples were analyzed using X-ray diffraction(XRD).The result indicates that dust particles were dominated...A severe Asian Dust Storm(ADS)event occurred on April 16-17th,2006 in northem China.Mineral components of dust samples were analyzed using X-ray diffraction(XRD).The result indicates that dust particles were dominated by quartz(37.4%)and clay (32.9%),followed by plagioclase(13.7%),with small amounts of calcite,K-feldspar,dolomite,homblende, and gypsum(all【10%).The clay fractions with diameter less than 2μm were separated from the展开更多
The chemical compositions,mineralogical characteristics,as well as dissemination of iron-and phosphorus-based minerals were studied for the E’xi oolitic hematite from western Hubei Province in China by using chemical...The chemical compositions,mineralogical characteristics,as well as dissemination of iron-and phosphorus-based minerals were studied for the E’xi oolitic hematite from western Hubei Province in China by using chemical analysis,optical microscope,electron probe micro-analyzer(EPMA)and energy dispersive spectroscopy(EDS).It is found that this kind of oolitic hematite ore contains 47.71%TFe,10.96%SiO_2,as well as 0.874%P,with hematite as the dominant Fe-bearing minerals,and quartz,chamosite,illite and cellophane as main gangue minerals.The microscope examination showed that the ore has an oolitic structure,with some ooids principally formed by a series of concentric layers of hematite collophanite around nucleus that is hematite in the association with collophanite.Based on the EPMA and EDS analysis,it can be known that some ooids are primarily composed of hematite and collophanite.The separation can be achieved through fine grinding for those collophanite laminae with a higher P content.However,the dissemination of two minerals at the interface will result in the difficulty in effective separation.Besides,some ooids are made of chamosite with some nucleus formed of quartz,which is principally finely disseminated with hematite.In view of the close association and dissemination of iron-and phosphorus-based minerals in the ooids,it is found that the process of stage-grindings and stage-separations can be adopted to effectively increase the iron recovery and decrease the P content in the concentrate to some extent.展开更多
Sulfide oxidation by microbial activities play an important role in the release of heavy metals. An important source of contamination and formation of AMD is the heavy metals convey to soil, rivulet and groundwater. P...Sulfide oxidation by microbial activities play an important role in the release of heavy metals. An important source of contamination and formation of AMD is the heavy metals convey to soil, rivulet and groundwater. Pyrite is a commonly sulfide minerals in mine wastes, so it is vitally to prove up the microbial oxidation process.展开更多
The first International Conference on Modern Process Mineralogy and Mineral Processing, organized by the Nonferrous Metals Society of China and hosted by Beijing General Research Institute of Mining and Metallurgy,was...The first International Conference on Modern Process Mineralogy and Mineral Processing, organized by the Nonferrous Metals Society of China and hosted by Beijing General Research Institute of Mining and Metallurgy,was held on September 22-25,1992,in Beijing,China.About 350 scholars and experts from 25 countries and regions showed up at the conference and 130 papers were presented,among them 98 papers are of mineral processing.Some of the papers given in mineral processing are summed up as follows.展开更多
We describe a novel lab based X-ray computed tomography system based on the architecture of X-ray Microscopes (XRM) used in synchrotron radiation facilities to be adapted for mineral processing and mineral liberation ...We describe a novel lab based X-ray computed tomography system based on the architecture of X-ray Microscopes (XRM) used in synchrotron radiation facilities to be adapted for mineral processing and mineral liberation analysis. As this is a tomographic technique performed with an XRM, it is non-destructive and does not require complex preparation of polished sections typical of SEM-EDS techniques (such as MLA and QEMSCAN). It complements these existing techniques by providing 3D information and mineral liberation of multi-phase particles with much larger sample volume statistics but at a fraction of the time. In several applications, the technique is superior. These include the characterization of tailing loss in precious minerals; the characterization of porosity, particle size distribution, crack and pore network analysis during comminution, heap leaching and for texture and exposure/lock class analysis for floatation.展开更多
Conventional electron and optical microscopy techniques require the sample to be sectioned, polished or etched to expose the internal surfaces for imaging. However, such sample preparation techniques have traditionall...Conventional electron and optical microscopy techniques require the sample to be sectioned, polished or etched to expose the internal surfaces for imaging. However, such sample preparation techniques have traditionally prevented the observation of the same sample over time, under realistic three-dimensional geometries and in an environment representative of real-world operating conditions. X-ray microscopy (XRM) is a rapidly emerging technique that enables non-destructive evaluation of buried structures within hard to soft materials in 3D, requiring little to no sample preparation. Furthermore in situ and 4D quantification of microstructural evolution under controlled environment as a function of time, temperature, chemistry or stress can be done repeatable on the same sample, using practical specimen sizes ranging from tens of microns to several cm diameter, with achievable imaging resolution from submicron to 50 nm. Many of these studies were reported using XRM in synchrotron beamlines. These include crack propagation on composite and construction materials; corrosion studies; microstructural changes during the setting of cement; flow studies within porous media to mention but a few.展开更多
The study area is part of the Urumieh–Dokhtar volcanic arc that a large part of its surface is covered by extrusive Igneous rocks(tuff,intermediate lavas and ignimbrites sheets),plutonic igneous(diorite and granodior...The study area is part of the Urumieh–Dokhtar volcanic arc that a large part of its surface is covered by extrusive Igneous rocks(tuff,intermediate lavas and ignimbrites sheets),plutonic igneous(diorite and granodiorite)and semi-deep stones(dyke and sill).Studied samples are situated in calc-alkaline domain of magmatic series diagrams.Harker diagrams show the fractional crystallization of Clinopyroxene,amphibole,plagioclase,alkali feldspars and opaque minerals(ilmenite Titano-magnetite,ilmenite and rutile).In spider diagrams,light rare earth elements(LREE)are enriched compared to heavy rare earth elements(HREE),and HFS elements(Ti,Nb)show negative anomaly and LFS elements(Cs,K,Pb)show positive anomaly,showing that it is a distinct characteristic of subduction zones.Skarns of the area mainly are of exoskarns and are rich in plagioclase,microcline,amphibole,biotite and epidote.Skarn is enriched of iron,copper,molybdenum,vanadium,lead,zinc and silver.Deposits of barite in the area show characteristics of volcanic-sedimentary barites and are associated to ore-bearing hydrothermal solutions.Using satellite images and processing information,four areas with high mineral potential are identified in the area.展开更多
Titanium minerals are of interest because they constitute the most important source of titanium,a strategic metal in modem industry.However, knowledge on their structure,composition,and properties of nanodisperse stru...Titanium minerals are of interest because they constitute the most important source of titanium,a strategic metal in modem industry.However, knowledge on their structure,composition,and properties of nanodisperse structures has been limited. Several studies have shown that synthetic analogs of natural titanium oxides have structural features and physico-chemical properties distinctly different展开更多
Bauxite residue is an alkaline waste material in the process of alumina production due to its characteristics of higher salinity and alkalinity,which results in environmental issues and extremely restricts the sustain...Bauxite residue is an alkaline waste material in the process of alumina production due to its characteristics of higher salinity and alkalinity,which results in environmental issues and extremely restricts the sustainable development of alumina industries.In this work,we conduct a column experiment to study the effects of two amendments on aggregate stability and variations in alkaline minerals of bauxite residue.The two amendments are phosphogypsum(PG)and phosphogypsum and vermicompost(PVC).The dominant fraction in aggregate is 1–0.25 mm in diameter on the surface,which takes up 39.34%,39.38%,and 44.51%for CK,PG,and PVC,respectively.Additions of PG and PVC decreased pH,EC,ESP,exchangeable Na^+concentration and the percentage of alkaline minerals,and then increased exchangeable Ca^2+concentration in bauxite residue.There was significant positive correlation between pH and exchangeable Na^+concentration,the percentage of cancrinite,tricalcium aluminate and calcite;while negative correlation was found in pH value versus exchangeable Ca^2+concentration.Theses findings confirmed that additions of phosphogypsum and vermicompost have a stimulative effect on aggregate stability in bauxite residue.In particular,amendment neutralization(phosphogypsum+vermicompost)in column represents an advantage for large-scale simulation of vegetation rehabilitate in bauxite residue disposal areas.展开更多
The electrokinetic properties and flotation of diaspore, kaolinite, pyrophyllite and illite with quaternary ammonium salts collectors were studied. The results of flotation tests show that the collecting ability of qu...The electrokinetic properties and flotation of diaspore, kaolinite, pyrophyllite and illite with quaternary ammonium salts collectors were studied. The results of flotation tests show that the collecting ability of quaternary ammonium salts for the four minerals is in the order(from strong to weak) ofoctadecyl dimethyl benzyl ammonium chloride(ODBA), cetyl trimethyl ammonium bromide(CTAB), dodecyl trimethyl ammonium chloride(DTAC). Under the condition of alkalescence, it is possible to separate the diaspore from the silicate minerals such as kaolinite, illite and pyrophyllite using quaternary ammonium salts as collector. Isoelectric points (IEP) of diaspore, kaolinite, pyrophyllite and illite are pH=6.0, 3.4, 2.3 and 3.2, respectively. Quaternary ammonium salts can change ζ-potential of the aluminosilicate minerals obviously. The flotation mechanisms were explained by ζ-potential and Fourier transform infrared spectrum (FT-IR) measurements. The results demonstrate that only electrostatic interaction takes place between aluminosilicate minerals (diaspore, kaolinite, pyrophyllite and illite) and quaternary ammonium salts.展开更多
Bioleaching is regarded as an essential technology to treat low grade minerals,with the distinctive superiorities of lower-cost and environment-friendly compared with traditional pyrometallurgy method.However,the biol...Bioleaching is regarded as an essential technology to treat low grade minerals,with the distinctive superiorities of lower-cost and environment-friendly compared with traditional pyrometallurgy method.However,the bioleaching efficiency is unsatisfactory owing to the passivation film formed on the minerals surface.It is of particular interest to know the dissolution and passivation mechanism of sulfide minerals in the presence of microorganism.Although bioleaching can be useful in extracting metals,it is a double-edged sword.Metallurgical activities have caused serious environmental problems such as acid mine drainage(AMD).The understanding of some common sulfide minerals bioleaching processes and protection of AMD environment is reviewed in this article.展开更多
Based on various ultrasonic loss mechanisms, the formula of the cumulative mass percentage of minerals with different particle sizes was given, with which the particle size distribution was integrated into an ultrason...Based on various ultrasonic loss mechanisms, the formula of the cumulative mass percentage of minerals with different particle sizes was given, with which the particle size distribution was integrated into an ultrasonic attenuation model. And then the correlations between the ultrasonic attenuation and the pulp density, and the particle size were obtained. The derived model was combined with the experiment and the analysis of experimental data to determine the inverse model relating ultrasonic attenuation coefficient with size distribution. Finally, an optimization method of inverse parameter, genetic algorithm was applied for particle size distribution. The results of inverse calculation show that the precision of measurement was high.展开更多
The age of mineralization in a mining area is a primary factor in various researches related to ore\|forming process. It is that the uncertainty of mineralization ages of gold ore deposits in northern zone of eastern ...The age of mineralization in a mining area is a primary factor in various researches related to ore\|forming process. It is that the uncertainty of mineralization ages of gold ore deposits in northern zone of eastern Kunlun Mountains, Qinghai Province, restrains to probe the relationship of the deposits to the regional tectonic evolution. This paper documents the fission track method used to determine the ages of gold ore deposits in eastern Kunlun Mountains and considers the implication for the origin of the deposits.Eastern Kunlun Mountains is the northern part of the Qinghai—Tibet Plateau and is of three deep\|seated fault belts in about EW extension. This work mainly includes three gold ore districts. All of them, in the north of Mid\|Kunlun fault belt, belong to northern part of eastern Kunlun Mountains. The Yanjingou district, with geographical coordinate 96°00’E and 36°10’N, is located 60 km north of Hongqigou district . Both of them are large, typical tectonoalteration gold deposits and were formed in similar geological setting. Hongshuihe ore district is located 50 km east of Yanjingou district and includes tectonoalteration and magmatic cryptoexplosive gold deposits. Outcroped strata are dominantly Jinshuikou Group metamorphic rocks of Lower Proterozoic erathem. The occurrence area of igneous rocks, especially granitoid, accounts for about 90% in first two districts and become less in Hongshuihe district. The gold deposits occur in NW\|striking fault belts. The Rb\|Sr isochron age and K\|Ar isotopic age of Moyite relevant to the gold mineralization are respectively 228 25Ma and 207 1Ma. Rb\|Sr dating of diorite porphyrite is 209 09Ma. Sericite selected from Yanjingou orebody has 252 9Ma K\|Ar age. The ore in Hongqigou district has 197Ma K\|Ar age and 210Ma model age of Pb isotope of galena.展开更多
Iron sulfide minerals are widely distributed, of which characteristics had the identification significance of formation environment. Previously, there were more research on iron sulfide minerals under hydrothermal con...Iron sulfide minerals are widely distributed, of which characteristics had the identification significance of formation environment. Previously, there were more research on iron sulfide minerals under hydrothermal condition, and few studies under volcanism formation condition. To simulate volcanic mineralization, the study of different temperature from 250 to 410℃ , different iron sulfur ratio from Fe:S=2∶1 to 1∶8, and two different sources of iron, reduced iron powder (Fe) and ferrous sulfide (FeS), on iron sulfide mineral evolution was investigated under thermal sulfurization condition. By using scanning electron microscopy (SEM), X-ray diffraction (XRD) and other methods, the morphology, composition and structural characteristics of the products were observed and analyzed.展开更多
The galvanic coupling formed in origin potential flotation systems of sulfide minerals can be divided (into) three types: sulfide mineral-sulfide mineral-water system; sulfide mineral-steel ball-water system; and su...The galvanic coupling formed in origin potential flotation systems of sulfide minerals can be divided (into) three types: sulfide mineral-sulfide mineral-water system; sulfide mineral-steel ball-water system; and sulfide mineral-sulfide mineral-collector system. In this paper, taking lead, zinc, iron sulfide mineral systems for examples, several models of galvanic coupling were proposed and the effects of galvanic coupling on flotation were discussed. A galvanic contact between galena (or sphalerite) and pyrite contributes to decreasing the content of zinc in lead concentrate, and enhances remarkably the absorption of collector on the galena surface. During grinding, due to galvanic interactions between minerals and steel medium, Fe(OH)3 formed covers on the cathodic mineral surface, affecting its floatability.展开更多
First-principles calculations are performed to investigate the relaxation and electronic properties of sulfide minerals surfaces(MoS2, Sb2S3, Cu2 S, ZnS, PbS and FeS2) in presence of H2 O molecule. The calculated resu...First-principles calculations are performed to investigate the relaxation and electronic properties of sulfide minerals surfaces(MoS2, Sb2S3, Cu2 S, ZnS, PbS and FeS2) in presence of H2 O molecule. The calculated results show that the structure and electronic properties of sulfide minerals surfaces have been influenced in presence of H2 O molecule. The adsorption of the flotation reagent at the interface of mineral-water would be different from that of mineral surface due to the changes of surface structures and electronic properties caused by H2 O molecule. Hence, the influence of H2 O molecule on the reaction of flotation reagent with sulfide mineral surface will attract more attention.展开更多
The Lunggar iron deposit belongs to the Bangong-Nujiang metallogenic belt and is located in central Lhasa on the Tibetan Plateau.In the Lunggar deposit,iron mineralization formed in the skarnization contact zone betwe...The Lunggar iron deposit belongs to the Bangong-Nujiang metallogenic belt and is located in central Lhasa on the Tibetan Plateau.In the Lunggar deposit,iron mineralization formed in the skarnization contact zone between the Early Cretaceous granodiorite and the late Permian Xiala Formation limestone.In this study,we achieved detailed zircon U-Pb-Hf isotopes and mineral chemistry for the Early Cretaceous granodiorite.Zircon U-Pb dating results indicate that the Early Cretaceous granodiorite emplaced at ca.119 Ma.Based on the trace elements in zircons and the mineral chemical composition of amphibole and biotite,the Early Cretaceous granodiorite was believed to form under condition of high temperature(>700°C),low pressure(100400 MPa),and relatively high oxygen fugacity(lgfO2)(13.6 to 13.9)and H2O content(4%8%).Zircon trace elements,Hf isotope and biotite chemistry collectively reveal that significant juvenile mantle-derived magmas contributed to the source of the granodiorite.The relatively high logfO2 and shallow magma chamber are beneficial for skarn iron mineralization,implying remarkable potential for further prospecting in the Lunggar iron deposit.展开更多
By detecting the influence of six main ingredients of PM2.5 mineral dusts on the A549 cell morphology, proliferation inhibition rate, micronuclei and DNA damage, to explore the genotoxicity of PM2.5 mineral dusts. (1)...By detecting the influence of six main ingredients of PM2.5 mineral dusts on the A549 cell morphology, proliferation inhibition rate, micronuclei and DNA damage, to explore the genotoxicity of PM2.5 mineral dusts. (1) After exposure to six kinds of dusts of 200 μg/mL concentration for 24 hours, the morphology of A549 cells were observed using Wright-Giemsa staining. (2) After exposure to different concentrations of mineral dusts for 24 hours, the proliferation inhibition rate of A549 cells was detected by MTT assay. (3) Cells were exposed to PM2.5 mineral dusts at a concentration of 200 μg/mL for 24 h. After Wright-Giemsa staining, the rates of micronucleus cells were counted under oil microscope. (4) Observe Comet phenomenon by SCGE electrophoresis, the degree of DNA damage was observed by OTM. (1) Compared to the control group, membrane destruction, nuclear pyknosis and mineral surface adhesion were mainly seen in the Sericite group and Albite group. In the Quartz group and Montmorillonite group, enlarged cell gaps, loosely arranged cells, absorption of a large number of minerals on the cell surface, and cell pyknosis were observed. (2) The proliferation inhibition rate of the six kinds of dusts to A549 cells were (from large to small): KWC-M>Nano-SiO2>KWC-S>KWC-Q>KWC-A>KWC-C.The dust concentration was positively related to the inhibition of cell proliferation rate. (3) With the dusts concentration increased, the incidence of micronuclei gradually increased. The rate was positively correlated to exposure concentration. (4) The six mineral dusts can damage DNA of the A549 cells by dose-response relationship.The higher concentration of the mineral dusts, the more obvious of the DNA damagenation. There’s statistically significant compared with the control group. The six main ingredients of the PM2.5 mineral dusts can change A549 cell morphology from varying degrees, improve proliferation inhibition rate of the cells, increase the number of micronuclei cells, damage DNA.Then we come to the conclusion that PM2.5 mineral dusts can change the genotoxicity of the cells.展开更多
基金Project(42277256)supported by the National Natural Science Foundation of ChinaProjects(HBKT-2021011,HBKT-2021014)supported by the Hunan Province Environmental Protection Research Program,ChinaProject(CDSKY-2023-05)supported by the Scientific Research of Project Hunan Provincial Urban Geological Survey and Monitoring Institute,China。
文摘In this study,Schwertmannite,Akaganéite and ammoniojarosite were biosynthesized by different bacteria and characterized.The results showed that bacteria are critical in mediating the mineral formation process:the morphology,crystallinity,grain size and specific surface area of each mineral varied upon different bacteria and culturing conditions.In addition,the formed minerals’elemental composition and group disparity lead to different morphology,crystallinity and subsequent adsorption performance.In particular,adsorption difference existed in iron minerals biosynthesized by different bacteria.The maximal adsorption capacities of Akaganéite,Schwertmannite and ammoniojarosite were 26.6 mg/g,17.5 mg/g and 3.90 mg/g respectively.Cr(VI)adsorption on iron-minerals involves hydrogen bonding,electrostatic interaction,and ligand exchange.The adsorption only occurred on the surface of ammoniojarosite,while for Akaganéite and Schwertmannite,the tunnel structure greatly facilitated the adsorption process and improved adsorption capacity.Thus,the molecular structure is the primary determining factor for adsorption performance.Collectively,the results can provide useful information in selecting suitable bacteria for synthesizing heavy-metal scavenging minerals according to different environmental conditions.
文摘A severe Asian Dust Storm(ADS)event occurred on April 16-17th,2006 in northem China.Mineral components of dust samples were analyzed using X-ray diffraction(XRD).The result indicates that dust particles were dominated by quartz(37.4%)and clay (32.9%),followed by plagioclase(13.7%),with small amounts of calcite,K-feldspar,dolomite,homblende, and gypsum(all【10%).The clay fractions with diameter less than 2μm were separated from the
基金Project(51474161)supported by the National Natural Science Foundation of China
文摘The chemical compositions,mineralogical characteristics,as well as dissemination of iron-and phosphorus-based minerals were studied for the E’xi oolitic hematite from western Hubei Province in China by using chemical analysis,optical microscope,electron probe micro-analyzer(EPMA)and energy dispersive spectroscopy(EDS).It is found that this kind of oolitic hematite ore contains 47.71%TFe,10.96%SiO_2,as well as 0.874%P,with hematite as the dominant Fe-bearing minerals,and quartz,chamosite,illite and cellophane as main gangue minerals.The microscope examination showed that the ore has an oolitic structure,with some ooids principally formed by a series of concentric layers of hematite collophanite around nucleus that is hematite in the association with collophanite.Based on the EPMA and EDS analysis,it can be known that some ooids are primarily composed of hematite and collophanite.The separation can be achieved through fine grinding for those collophanite laminae with a higher P content.However,the dissemination of two minerals at the interface will result in the difficulty in effective separation.Besides,some ooids are made of chamosite with some nucleus formed of quartz,which is principally finely disseminated with hematite.In view of the close association and dissemination of iron-and phosphorus-based minerals in the ooids,it is found that the process of stage-grindings and stage-separations can be adopted to effectively increase the iron recovery and decrease the P content in the concentrate to some extent.
文摘Sulfide oxidation by microbial activities play an important role in the release of heavy metals. An important source of contamination and formation of AMD is the heavy metals convey to soil, rivulet and groundwater. Pyrite is a commonly sulfide minerals in mine wastes, so it is vitally to prove up the microbial oxidation process.
文摘The first International Conference on Modern Process Mineralogy and Mineral Processing, organized by the Nonferrous Metals Society of China and hosted by Beijing General Research Institute of Mining and Metallurgy,was held on September 22-25,1992,in Beijing,China.About 350 scholars and experts from 25 countries and regions showed up at the conference and 130 papers were presented,among them 98 papers are of mineral processing.Some of the papers given in mineral processing are summed up as follows.
文摘We describe a novel lab based X-ray computed tomography system based on the architecture of X-ray Microscopes (XRM) used in synchrotron radiation facilities to be adapted for mineral processing and mineral liberation analysis. As this is a tomographic technique performed with an XRM, it is non-destructive and does not require complex preparation of polished sections typical of SEM-EDS techniques (such as MLA and QEMSCAN). It complements these existing techniques by providing 3D information and mineral liberation of multi-phase particles with much larger sample volume statistics but at a fraction of the time. In several applications, the technique is superior. These include the characterization of tailing loss in precious minerals; the characterization of porosity, particle size distribution, crack and pore network analysis during comminution, heap leaching and for texture and exposure/lock class analysis for floatation.
文摘Conventional electron and optical microscopy techniques require the sample to be sectioned, polished or etched to expose the internal surfaces for imaging. However, such sample preparation techniques have traditionally prevented the observation of the same sample over time, under realistic three-dimensional geometries and in an environment representative of real-world operating conditions. X-ray microscopy (XRM) is a rapidly emerging technique that enables non-destructive evaluation of buried structures within hard to soft materials in 3D, requiring little to no sample preparation. Furthermore in situ and 4D quantification of microstructural evolution under controlled environment as a function of time, temperature, chemistry or stress can be done repeatable on the same sample, using practical specimen sizes ranging from tens of microns to several cm diameter, with achievable imaging resolution from submicron to 50 nm. Many of these studies were reported using XRM in synchrotron beamlines. These include crack propagation on composite and construction materials; corrosion studies; microstructural changes during the setting of cement; flow studies within porous media to mention but a few.
文摘The study area is part of the Urumieh–Dokhtar volcanic arc that a large part of its surface is covered by extrusive Igneous rocks(tuff,intermediate lavas and ignimbrites sheets),plutonic igneous(diorite and granodiorite)and semi-deep stones(dyke and sill).Studied samples are situated in calc-alkaline domain of magmatic series diagrams.Harker diagrams show the fractional crystallization of Clinopyroxene,amphibole,plagioclase,alkali feldspars and opaque minerals(ilmenite Titano-magnetite,ilmenite and rutile).In spider diagrams,light rare earth elements(LREE)are enriched compared to heavy rare earth elements(HREE),and HFS elements(Ti,Nb)show negative anomaly and LFS elements(Cs,K,Pb)show positive anomaly,showing that it is a distinct characteristic of subduction zones.Skarns of the area mainly are of exoskarns and are rich in plagioclase,microcline,amphibole,biotite and epidote.Skarn is enriched of iron,copper,molybdenum,vanadium,lead,zinc and silver.Deposits of barite in the area show characteristics of volcanic-sedimentary barites and are associated to ore-bearing hydrothermal solutions.Using satellite images and processing information,four areas with high mineral potential are identified in the area.
文摘Titanium minerals are of interest because they constitute the most important source of titanium,a strategic metal in modem industry.However, knowledge on their structure,composition,and properties of nanodisperse structures has been limited. Several studies have shown that synthetic analogs of natural titanium oxides have structural features and physico-chemical properties distinctly different
基金Projects(41701587,41877511)supported by the National Natural Science Foundation of China
文摘Bauxite residue is an alkaline waste material in the process of alumina production due to its characteristics of higher salinity and alkalinity,which results in environmental issues and extremely restricts the sustainable development of alumina industries.In this work,we conduct a column experiment to study the effects of two amendments on aggregate stability and variations in alkaline minerals of bauxite residue.The two amendments are phosphogypsum(PG)and phosphogypsum and vermicompost(PVC).The dominant fraction in aggregate is 1–0.25 mm in diameter on the surface,which takes up 39.34%,39.38%,and 44.51%for CK,PG,and PVC,respectively.Additions of PG and PVC decreased pH,EC,ESP,exchangeable Na^+concentration and the percentage of alkaline minerals,and then increased exchangeable Ca^2+concentration in bauxite residue.There was significant positive correlation between pH and exchangeable Na^+concentration,the percentage of cancrinite,tricalcium aluminate and calcite;while negative correlation was found in pH value versus exchangeable Ca^2+concentration.Theses findings confirmed that additions of phosphogypsum and vermicompost have a stimulative effect on aggregate stability in bauxite residue.In particular,amendment neutralization(phosphogypsum+vermicompost)in column represents an advantage for large-scale simulation of vegetation rehabilitate in bauxite residue disposal areas.
基金Project(2005CB623701) supported by the National Key Fundamental Research and Development Program of China
文摘The electrokinetic properties and flotation of diaspore, kaolinite, pyrophyllite and illite with quaternary ammonium salts collectors were studied. The results of flotation tests show that the collecting ability of quaternary ammonium salts for the four minerals is in the order(from strong to weak) ofoctadecyl dimethyl benzyl ammonium chloride(ODBA), cetyl trimethyl ammonium bromide(CTAB), dodecyl trimethyl ammonium chloride(DTAC). Under the condition of alkalescence, it is possible to separate the diaspore from the silicate minerals such as kaolinite, illite and pyrophyllite using quaternary ammonium salts as collector. Isoelectric points (IEP) of diaspore, kaolinite, pyrophyllite and illite are pH=6.0, 3.4, 2.3 and 3.2, respectively. Quaternary ammonium salts can change ζ-potential of the aluminosilicate minerals obviously. The flotation mechanisms were explained by ζ-potential and Fourier transform infrared spectrum (FT-IR) measurements. The results demonstrate that only electrostatic interaction takes place between aluminosilicate minerals (diaspore, kaolinite, pyrophyllite and illite) and quaternary ammonium salts.
文摘Bioleaching is regarded as an essential technology to treat low grade minerals,with the distinctive superiorities of lower-cost and environment-friendly compared with traditional pyrometallurgy method.However,the bioleaching efficiency is unsatisfactory owing to the passivation film formed on the minerals surface.It is of particular interest to know the dissolution and passivation mechanism of sulfide minerals in the presence of microorganism.Although bioleaching can be useful in extracting metals,it is a double-edged sword.Metallurgical activities have caused serious environmental problems such as acid mine drainage(AMD).The understanding of some common sulfide minerals bioleaching processes and protection of AMD environment is reviewed in this article.
基金Project supported by Technology Development and Research Special Foundation of National Science Research Academicand Institute , China
文摘Based on various ultrasonic loss mechanisms, the formula of the cumulative mass percentage of minerals with different particle sizes was given, with which the particle size distribution was integrated into an ultrasonic attenuation model. And then the correlations between the ultrasonic attenuation and the pulp density, and the particle size were obtained. The derived model was combined with the experiment and the analysis of experimental data to determine the inverse model relating ultrasonic attenuation coefficient with size distribution. Finally, an optimization method of inverse parameter, genetic algorithm was applied for particle size distribution. The results of inverse calculation show that the precision of measurement was high.
文摘The age of mineralization in a mining area is a primary factor in various researches related to ore\|forming process. It is that the uncertainty of mineralization ages of gold ore deposits in northern zone of eastern Kunlun Mountains, Qinghai Province, restrains to probe the relationship of the deposits to the regional tectonic evolution. This paper documents the fission track method used to determine the ages of gold ore deposits in eastern Kunlun Mountains and considers the implication for the origin of the deposits.Eastern Kunlun Mountains is the northern part of the Qinghai—Tibet Plateau and is of three deep\|seated fault belts in about EW extension. This work mainly includes three gold ore districts. All of them, in the north of Mid\|Kunlun fault belt, belong to northern part of eastern Kunlun Mountains. The Yanjingou district, with geographical coordinate 96°00’E and 36°10’N, is located 60 km north of Hongqigou district . Both of them are large, typical tectonoalteration gold deposits and were formed in similar geological setting. Hongshuihe ore district is located 50 km east of Yanjingou district and includes tectonoalteration and magmatic cryptoexplosive gold deposits. Outcroped strata are dominantly Jinshuikou Group metamorphic rocks of Lower Proterozoic erathem. The occurrence area of igneous rocks, especially granitoid, accounts for about 90% in first two districts and become less in Hongshuihe district. The gold deposits occur in NW\|striking fault belts. The Rb\|Sr isochron age and K\|Ar isotopic age of Moyite relevant to the gold mineralization are respectively 228 25Ma and 207 1Ma. Rb\|Sr dating of diorite porphyrite is 209 09Ma. Sericite selected from Yanjingou orebody has 252 9Ma K\|Ar age. The ore in Hongqigou district has 197Ma K\|Ar age and 210Ma model age of Pb isotope of galena.
基金Supported by National Natural Science Foundation (Grant No.:40872045 41172047)The Opening Project of Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education (12zxgk01)
文摘Iron sulfide minerals are widely distributed, of which characteristics had the identification significance of formation environment. Previously, there were more research on iron sulfide minerals under hydrothermal condition, and few studies under volcanism formation condition. To simulate volcanic mineralization, the study of different temperature from 250 to 410℃ , different iron sulfur ratio from Fe:S=2∶1 to 1∶8, and two different sources of iron, reduced iron powder (Fe) and ferrous sulfide (FeS), on iron sulfide mineral evolution was investigated under thermal sulfurization condition. By using scanning electron microscopy (SEM), X-ray diffraction (XRD) and other methods, the morphology, composition and structural characteristics of the products were observed and analyzed.
文摘The galvanic coupling formed in origin potential flotation systems of sulfide minerals can be divided (into) three types: sulfide mineral-sulfide mineral-water system; sulfide mineral-steel ball-water system; and sulfide mineral-sulfide mineral-collector system. In this paper, taking lead, zinc, iron sulfide mineral systems for examples, several models of galvanic coupling were proposed and the effects of galvanic coupling on flotation were discussed. A galvanic contact between galena (or sphalerite) and pyrite contributes to decreasing the content of zinc in lead concentrate, and enhances remarkably the absorption of collector on the galena surface. During grinding, due to galvanic interactions between minerals and steel medium, Fe(OH)3 formed covers on the cathodic mineral surface, affecting its floatability.
基金Project(51164001)supported by the National Natural Science Foundation of China
文摘First-principles calculations are performed to investigate the relaxation and electronic properties of sulfide minerals surfaces(MoS2, Sb2S3, Cu2 S, ZnS, PbS and FeS2) in presence of H2 O molecule. The calculated results show that the structure and electronic properties of sulfide minerals surfaces have been influenced in presence of H2 O molecule. The adsorption of the flotation reagent at the interface of mineral-water would be different from that of mineral surface due to the changes of surface structures and electronic properties caused by H2 O molecule. Hence, the influence of H2 O molecule on the reaction of flotation reagent with sulfide mineral surface will attract more attention.
基金Project(2018YSJS14)supported by the Open Research Fund Program of Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring(Central South University),Ministry of Education,China
文摘The Lunggar iron deposit belongs to the Bangong-Nujiang metallogenic belt and is located in central Lhasa on the Tibetan Plateau.In the Lunggar deposit,iron mineralization formed in the skarnization contact zone between the Early Cretaceous granodiorite and the late Permian Xiala Formation limestone.In this study,we achieved detailed zircon U-Pb-Hf isotopes and mineral chemistry for the Early Cretaceous granodiorite.Zircon U-Pb dating results indicate that the Early Cretaceous granodiorite emplaced at ca.119 Ma.Based on the trace elements in zircons and the mineral chemical composition of amphibole and biotite,the Early Cretaceous granodiorite was believed to form under condition of high temperature(>700°C),low pressure(100400 MPa),and relatively high oxygen fugacity(lgfO2)(13.6 to 13.9)and H2O content(4%8%).Zircon trace elements,Hf isotope and biotite chemistry collectively reveal that significant juvenile mantle-derived magmas contributed to the source of the granodiorite.The relatively high logfO2 and shallow magma chamber are beneficial for skarn iron mineralization,implying remarkable potential for further prospecting in the Lunggar iron deposit.
基金Project supported by the State Key Program of National Natural Science of China(No.41130746)
文摘By detecting the influence of six main ingredients of PM2.5 mineral dusts on the A549 cell morphology, proliferation inhibition rate, micronuclei and DNA damage, to explore the genotoxicity of PM2.5 mineral dusts. (1) After exposure to six kinds of dusts of 200 μg/mL concentration for 24 hours, the morphology of A549 cells were observed using Wright-Giemsa staining. (2) After exposure to different concentrations of mineral dusts for 24 hours, the proliferation inhibition rate of A549 cells was detected by MTT assay. (3) Cells were exposed to PM2.5 mineral dusts at a concentration of 200 μg/mL for 24 h. After Wright-Giemsa staining, the rates of micronucleus cells were counted under oil microscope. (4) Observe Comet phenomenon by SCGE electrophoresis, the degree of DNA damage was observed by OTM. (1) Compared to the control group, membrane destruction, nuclear pyknosis and mineral surface adhesion were mainly seen in the Sericite group and Albite group. In the Quartz group and Montmorillonite group, enlarged cell gaps, loosely arranged cells, absorption of a large number of minerals on the cell surface, and cell pyknosis were observed. (2) The proliferation inhibition rate of the six kinds of dusts to A549 cells were (from large to small): KWC-M>Nano-SiO2>KWC-S>KWC-Q>KWC-A>KWC-C.The dust concentration was positively related to the inhibition of cell proliferation rate. (3) With the dusts concentration increased, the incidence of micronuclei gradually increased. The rate was positively correlated to exposure concentration. (4) The six mineral dusts can damage DNA of the A549 cells by dose-response relationship.The higher concentration of the mineral dusts, the more obvious of the DNA damagenation. There’s statistically significant compared with the control group. The six main ingredients of the PM2.5 mineral dusts can change A549 cell morphology from varying degrees, improve proliferation inhibition rate of the cells, increase the number of micronuclei cells, damage DNA.Then we come to the conclusion that PM2.5 mineral dusts can change the genotoxicity of the cells.