There are many population-based stochastic search algorithms for solving optimization problems. However, the universality and robustness of these algorithms are still unsatisfactory. This paper proposes an enhanced se...There are many population-based stochastic search algorithms for solving optimization problems. However, the universality and robustness of these algorithms are still unsatisfactory. This paper proposes an enhanced self-adaptiveevolutionary algorithm (ESEA) to overcome the demerits above. In the ESEA, four evolutionary operators are designed to enhance the evolutionary structure. Besides, the ESEA employs four effective search strategies under the framework of the self-adaptive learning. Four groups of the experiments are done to find out the most suitable parameter values for the ESEA. In order to verify the performance of the proposed algorithm, 26 state-of-the-art test functions are solved by the ESEA and its competitors. The experimental results demonstrate that the universality and robustness of the ESEA out-perform its competitors.展开更多
针对思维进化算法中的产生初始种群的盲目随机性和冗余性以及现有搜索方式易陷入局部最优的问题,将混沌优化和思维进化算法结合,提出了一种基于混沌搜索的思维进化算法(Chaos Mind Evaluation Algorithm,CMEA)。该算法在进化的不同阶段...针对思维进化算法中的产生初始种群的盲目随机性和冗余性以及现有搜索方式易陷入局部最优的问题,将混沌优化和思维进化算法结合,提出了一种基于混沌搜索的思维进化算法(Chaos Mind Evaluation Algorithm,CMEA)。该算法在进化的不同阶段引入混沌优化操作,利用混沌的遍历性提高算法的收敛速度,克服了早熟现象,同时利用思维进化算法的记忆特性和当代最优解指导混沌搜索,提高算法的搜索能力。仿真结果表明,与标准思维进化相比,该算法优化能力强,能有效地避免局部收敛,具有更快的收敛速度。展开更多
基金supported by the Aviation Science Funds of China(2010ZC13012)the Fund of Jiangsu Innovation Program for Graduate Education (CXLX11 0203)
文摘There are many population-based stochastic search algorithms for solving optimization problems. However, the universality and robustness of these algorithms are still unsatisfactory. This paper proposes an enhanced self-adaptiveevolutionary algorithm (ESEA) to overcome the demerits above. In the ESEA, four evolutionary operators are designed to enhance the evolutionary structure. Besides, the ESEA employs four effective search strategies under the framework of the self-adaptive learning. Four groups of the experiments are done to find out the most suitable parameter values for the ESEA. In order to verify the performance of the proposed algorithm, 26 state-of-the-art test functions are solved by the ESEA and its competitors. The experimental results demonstrate that the universality and robustness of the ESEA out-perform its competitors.
文摘针对思维进化算法中的产生初始种群的盲目随机性和冗余性以及现有搜索方式易陷入局部最优的问题,将混沌优化和思维进化算法结合,提出了一种基于混沌搜索的思维进化算法(Chaos Mind Evaluation Algorithm,CMEA)。该算法在进化的不同阶段引入混沌优化操作,利用混沌的遍历性提高算法的收敛速度,克服了早熟现象,同时利用思维进化算法的记忆特性和当代最优解指导混沌搜索,提高算法的搜索能力。仿真结果表明,与标准思维进化相比,该算法优化能力强,能有效地避免局部收敛,具有更快的收敛速度。