Microstructure and mechanical properties of aged Mg-10Gd-2Y-0.4Zr-0.4Ag alloy sheets prepared by different rolling routes were investigated.The results showed that the cross rolling aged(CRA)sheet possesses larger gra...Microstructure and mechanical properties of aged Mg-10Gd-2Y-0.4Zr-0.4Ag alloy sheets prepared by different rolling routes were investigated.The results showed that the cross rolling aged(CRA)sheet possesses larger grain size than unidirectional rolling aged(URA)sheet due to the occurrence of dynamic recovery during rolling which reduces the dislocation density and delays dynamic recrystallization(DRX).The URA sheet has basal texture and RD favored texture while CRA sheet has multiple-peak texture.Both sheets precipitate β'phase and CRA sheet exhibits a stronger aging response.The CRA sheet has higher yield strength and tensile strength than URA sheet,with reduced yield strength anisotropy but increased tensile strength anisotropy.Taking into account different strengthening mechanisms,although the finer grain size of URA sheet enhances grain boundary strengthening,CRA sheet is more responsive to aging,leading to superior aging-precipitated phase strengthening and consequently higher yield strength.展开更多
With the rapid development of low-altitude economy and unmanned aerial vehicles (UAVs) deployment technology, aerial-ground collaborative delivery (AGCD) is emerging as a novel mode of last-mile delivery, where the ve...With the rapid development of low-altitude economy and unmanned aerial vehicles (UAVs) deployment technology, aerial-ground collaborative delivery (AGCD) is emerging as a novel mode of last-mile delivery, where the vehicle and its onboard UAVs are utilized efficiently. Vehicles not only provide delivery services to customers but also function as mobile ware-houses and launch/recovery platforms for UAVs. This paper addresses the vehicle routing problem with UAVs considering time window and UAV multi-delivery (VRPU-TW&MD). A mixed integer linear programming (MILP) model is developed to mini-mize delivery costs while incorporating constraints related to UAV energy consumption. Subsequently, a micro-evolution aug-mented large neighborhood search (MEALNS) algorithm incor-porating adaptive large neighborhood search (ALNS) and micro-evolution mechanism is proposed. Numerical experiments demonstrate the effectiveness of both the model and algorithm in solving the VRPU-TW&MD. The impact of key parameters on delivery performance is explored by sensitivity analysis.展开更多
The rapid evolution of unmanned aerial vehicle(UAV)technology and autonomous capabilities has positioned UAV as promising last-mile delivery means.Vehicle and onboard UAV collaborative delivery is introduced as a nove...The rapid evolution of unmanned aerial vehicle(UAV)technology and autonomous capabilities has positioned UAV as promising last-mile delivery means.Vehicle and onboard UAV collaborative delivery is introduced as a novel delivery mode.Spatiotemporal collaboration,along with energy consumption with payload and wind conditions play important roles in delivery route planning.This paper introduces the traveling salesman problem with time window and onboard UAV(TSPTWOUAV)and emphasizes the consideration of real-world scenarios,focusing on time collaboration and energy consumption with wind and payload.To address this,a mixed integer linear programming(MILP)model is formulated to minimize the energy consumption costs of vehicle and UAV.Furthermore,an adaptive large neighborhood search(ALNS)algorithm is applied to identify high-quality solutions efficiently.The effectiveness of the proposed model and algorithm is validated through numerical tests on real geographic instances and sensitivity analysis of key parameters is conducted.展开更多
According to the characteristic of cruise missiles,navigation point setting is simplified,and the principle of route planning for saturation attack and a concept of reference route are put forward.With the help of the...According to the characteristic of cruise missiles,navigation point setting is simplified,and the principle of route planning for saturation attack and a concept of reference route are put forward.With the help of the shortest-tangent idea in route-planning and the algorithm of back reasoning from targets,a reference route algorithm is built on the shortest range and threat avoidance.Then a route-flight-time algorithm is built on navigation points.Based on the conditions of multi-direction saturation attack,a route planning algorithm of multi-direction saturation attack is built on reference route,route-flight-time,and impact azimuth.Simulation results show that the algorithm can realize missiles fired in a salvo launch reaching the target simultaneously from different directions while avoiding threat.展开更多
Unmanned combat air vehicles(UCAVs) mission planning is a fairly complicated global optimum problem. Military attack missions often employ a fleet of UCAVs equipped with weapons to attack a set of known targets. A UCA...Unmanned combat air vehicles(UCAVs) mission planning is a fairly complicated global optimum problem. Military attack missions often employ a fleet of UCAVs equipped with weapons to attack a set of known targets. A UCAV can carry different weapons to accomplish different combat missions. Choice of different weapons will have different effects on the final combat effectiveness. This work presents a mixed integer programming model for simultaneous weapon configuration and route planning of UCAVs, which solves the problem optimally using the IBM ILOG CPLEX optimizer for simple missions. This paper develops a heuristic algorithm to handle the medium-scale and large-scale problems. The experiments demonstrate the performance of the heuristic algorithm in solving the medium scale and large scale problems. Moreover, we give suggestions on how to select the most appropriate algorithm to solve different scale problems.展开更多
As each type of satellite network has different link features, its data transmission must be designed based on its link features to improve the efficiency of data transferring. The transmission of navigation integrate...As each type of satellite network has different link features, its data transmission must be designed based on its link features to improve the efficiency of data transferring. The transmission of navigation integrated services information (NISI) in a global navigation satellite system (GNSS) with inter-satellite links (ISLs) is studied by taking the real situation of inter-satellite communication links into account. An on-demand computing and buffering centralized route strategy is proposed based on dynamic grouping and the topology evolution law of the GNSS network within which the satellite nodes are operated in the manner of dynamic grouping. Dynamic grouping is based on satellites spatial relationships and the group role of the satellite node changes by turns due to its spatial relationships. The route strategy provides significant advantages of high efficiency, low complexity, and flexi- ble configuration, by which the established GNSS can possess the features and capabilities of feasible deployment, efficient transmission, convenient management, structural invulnerability and flexible expansion.展开更多
A novel evolutionary route planner for aircraft is proposed in this paper. In the new planner, individual candidates are evaluated with respect to the workspace, thus the computation of the configuration space is not ...A novel evolutionary route planner for aircraft is proposed in this paper. In the new planner, individual candidates are evaluated with respect to the workspace, thus the computation of the configuration space is not required. By using problem-specific chromosome structure and genetic operators, the routes are generated in real time, with different mission constraints such as minimum route leg length and flying altitude, maximum turning angle, maximum climbing/diving angle and route distance constraint taken into account.展开更多
Unmanned aerial vehicle(UAV)was introduced as a novel traffic device to collect road traffic information and its cruise route planning problem was considered.Firstly,a multi-objective optimization model was proposed a...Unmanned aerial vehicle(UAV)was introduced as a novel traffic device to collect road traffic information and its cruise route planning problem was considered.Firstly,a multi-objective optimization model was proposed aiming at minimizing the total cruise distance and the number of UAVs used,which used UAV maximum cruise distance,the number of UAVs available and time window of each monitored target as constraints.Then,a novel multi-objective evolutionary algorithm was proposed.Next,a case study with three time window scenarios was implemented.The results show that both the total cruise distance and the number of UAVs used continue to increase with the time window constraint becoming narrower.Compared with the initial optimal solutions,the optimal total cruise distance and the number of UAVs used fall by an average of 30.93% and 31.74%,respectively.Finally,some concerns using UAV to collect road traffic information were discussed.展开更多
In order to increase productivity and reduce energy consumption of steelmaking-continuous casting(SCC) production process, especially with complicated technological routes, the cross entropy(CE) method was adopted to ...In order to increase productivity and reduce energy consumption of steelmaking-continuous casting(SCC) production process, especially with complicated technological routes, the cross entropy(CE) method was adopted to optimize the SCC production scheduling(SCCPS) problem. Based on the CE method, a matrix encoding scheme was proposed and a backward decoding method was used to generate a reasonable schedule. To describe the distribution of the solution space, a probability distribution model was built and used to generate individuals. In addition, the probability updating mechanism of the probability distribution model was proposed which helps to find the optimal individual gradually. Because of the poor stability and premature convergence of the standard cross entropy(SCE) algorithm, the improved cross entropy(ICE) algorithm was proposed with the following improvements: individual generation mechanism combined with heuristic rules, retention mechanism of the optimal individual, local search mechanism and dynamic parameters of the algorithm. Simulation experiments validate that the CE method is effective in solving the SCCPS problem with complicated technological routes and the ICE algorithm proposed has superior performance to the SCE algorithm and the genetic algorithm(GA).展开更多
A quality of service (QoS) or constraint-based routing selection needs to find a path subject to multiple constraints through a network. The problem of finding such a path is known as the multi-constrained path (MC...A quality of service (QoS) or constraint-based routing selection needs to find a path subject to multiple constraints through a network. The problem of finding such a path is known as the multi-constrained path (MCP) problem, and has been proven to be NP-complete that cannot be exactly solved in a polynomial time. The NPC problem is converted into a multiobjective optimization problem with constraints to be solved with a genetic algorithm. Based on the Pareto optimum, a constrained routing computation method is proposed to generate a set of nondominated optimal routes with the genetic algorithm mechanism. The convergence and time complexity of the novel algorithm is analyzed. Experimental results show that multiobjective evolution is highly responsive and competent for the Pareto optimum-based route selection. When this method is applied to a MPLS and metropolitan-area network, it will be capable of optimizing the transmission performance.展开更多
Unmanned aerial vehicle(UAV)was introduced to take road segment traffic surveillance.Considering the limited UAV maximum flight distance,UAV route planning problem was studied.First,a multi-objective optimization mode...Unmanned aerial vehicle(UAV)was introduced to take road segment traffic surveillance.Considering the limited UAV maximum flight distance,UAV route planning problem was studied.First,a multi-objective optimization model of planning UAV route for road segment surveillance was proposed,which aimed to minimize UAV cruise distance and minimize the number of UAVs used.Then,an evolutionary algorithm based on Pareto optimality technique was proposed to solve multi-objective UAV route planning problem.At last,a UAV flight experiment was conducted to test UAV route planning effect,and a case with three scenarios was studied to analyze the impact of different road segment lengths on UAV route planning.The case results show that the optimized cruise distance and the number of UAVs used decrease by an average of 38.43% and 33.33%,respectively.Additionally,shortening or extending the length of road segments has different impacts on UAV route planning.展开更多
The route optimization problem for road networks was applied to pedestrian flow.Evacuation path networks with nodes and arcs considering the traffic capacities of facilities were built in metro hubs,and a path impedan...The route optimization problem for road networks was applied to pedestrian flow.Evacuation path networks with nodes and arcs considering the traffic capacities of facilities were built in metro hubs,and a path impedance function for metro hubs which used the relationships among circulation speed,density and flow rate for pedestrians was defined.Then,a route optimization model which minimizes the movement time of the last evacuee was constructed to optimize evacuation performance.Solutions to the proposed mathematical model were obtained through an iterative optimization process.The route optimization model was applied to Xidan Station of Beijing Metro Line 4 based on the actual situations,and the calculation results of the model were tested using buildingExodus microscopic evacuation simulation software.The simulation result shows that the proposed model shortens the evacuation time by 16.05%,3.15% and 2.78% compared with all or none method,equally split method and Logit model,respectively.Furthermore,when the population gets larger,evacuation efficiency in the proposed model has a greater advantage.展开更多
In recent years,using message ferries as mechanical carriers of data has been shown to be an effective way to collect information in sparse wireless sensor networks.As the sensors are far away from each other in such ...In recent years,using message ferries as mechanical carriers of data has been shown to be an effective way to collect information in sparse wireless sensor networks.As the sensors are far away from each other in such highly partitioned scenario,a message ferry needs to travel a long route to access all the sensors and carry the data collected from the sensors to the sink.Typically,practical constraints(e.g.,the energy)preclude a ferry from visiting all sensors in a single tour.In such case,the ferry can only access part of the sensors in each tour and move back to the sink to get the energy refilled.So,the energy-constrained ferry route design(ECFRD)problem is discussed,which leads to the optimization problem of minimizing the total route length of the ferry,while keeping the route length of each tour below a given constraint.The ECFRD problem is proved to be NP-hard problem,and the integer linear programming(ILP)formulation is given.After that,efficient heuristic algorithms are proposed to solve this problem.The experimental results show that the performances of the proposed algorithms are effective in practice compared to the optimal solution.展开更多
To address the issue of premature convergence and slow convergence rate in three-dimensional (3D) route planning of unmanned aerial vehicle (UAV) low-altitude penetration,a novel route planning method was proposed.Fir...To address the issue of premature convergence and slow convergence rate in three-dimensional (3D) route planning of unmanned aerial vehicle (UAV) low-altitude penetration,a novel route planning method was proposed.First and foremost,a coevolutionary multi-agent genetic algorithm (CE-MAGA) was formed by introducing coevolutionary mechanism to multi-agent genetic algorithm (MAGA),an efficient global optimization algorithm.A dynamic route representation form was also adopted to improve the flight route accuracy.Moreover,an efficient constraint handling method was used to simplify the treatment of multi-constraint and reduce the time-cost of planning computation.Simulation and corresponding analysis show that the planning results of CE-MAGA have better performance on terrain following,terrain avoidance,threat avoidance (TF/TA2) and lower route costs than other existing algorithms.In addition,feasible flight routes can be acquired within 2 s,and the convergence rate of the whole evolutionary process is very fast.展开更多
Unmanned air vehicles(UAVs) have been regularly employed in modern wars to conduct different missions. Instead of addressing mission planning and route planning separately,this study investigates the issue of joint mi...Unmanned air vehicles(UAVs) have been regularly employed in modern wars to conduct different missions. Instead of addressing mission planning and route planning separately,this study investigates the issue of joint mission and route planning for a fleet of UAVs. The mission planning determines the configuration of weapons in UAVs and the weapons to attack targets, while the route planning determines the UAV’s visiting sequence for the targets. The problem is formulated as an integer linear programming model. Due to the inefficiency of CPLEX on large scale optimization problems, an effective learningbased heuristic, namely, population based adaptive large neighborhood search(P-ALNS), is proposed to solve the model. In P-ALNS, seven neighborhood structures are designed and adaptively utilized in terms of their historical performance. The effectiveness and superiority of the proposed model and algorithm are demonstrated on test instances of small, medium and large sizes. In particular, P-ALNS achieves comparable solutions or as good as those of CPLEX on small-size(20 targets)instances in much shorter time.展开更多
In this research paper, a routing problem of undirected networks has been solved. The problem was to determine the optimal routes of a telecommunication network. A heuristic approach has been adopted,due to the specif...In this research paper, a routing problem of undirected networks has been solved. The problem was to determine the optimal routes of a telecommunication network. A heuristic approach has been adopted,due to the specific uature of the problem.The problem is only concerned withdistant(remote) nodes of the network which are indirectly linked through a single intermediate node.To determine the optimal routes,the devised heuristic has been coded in FORTRAN language. Forthe validation of developed heuristic,it has been implemented on two sample networks. Finally, ithas been applied to the actual(gived) network. The achieved results have proved its application insepcific networking problem. It can also enhance the effective utilization of available resources.展开更多
基金Project(2023GK2020)supported by the Key Research and Development Program of Hunan Province,China。
文摘Microstructure and mechanical properties of aged Mg-10Gd-2Y-0.4Zr-0.4Ag alloy sheets prepared by different rolling routes were investigated.The results showed that the cross rolling aged(CRA)sheet possesses larger grain size than unidirectional rolling aged(URA)sheet due to the occurrence of dynamic recovery during rolling which reduces the dislocation density and delays dynamic recrystallization(DRX).The URA sheet has basal texture and RD favored texture while CRA sheet has multiple-peak texture.Both sheets precipitate β'phase and CRA sheet exhibits a stronger aging response.The CRA sheet has higher yield strength and tensile strength than URA sheet,with reduced yield strength anisotropy but increased tensile strength anisotropy.Taking into account different strengthening mechanisms,although the finer grain size of URA sheet enhances grain boundary strengthening,CRA sheet is more responsive to aging,leading to superior aging-precipitated phase strengthening and consequently higher yield strength.
基金supported by the Fundamental Research Funds for the Central Universities(2024JBZX038)the National Natural Science Foundation of China(62076023).
文摘With the rapid development of low-altitude economy and unmanned aerial vehicles (UAVs) deployment technology, aerial-ground collaborative delivery (AGCD) is emerging as a novel mode of last-mile delivery, where the vehicle and its onboard UAVs are utilized efficiently. Vehicles not only provide delivery services to customers but also function as mobile ware-houses and launch/recovery platforms for UAVs. This paper addresses the vehicle routing problem with UAVs considering time window and UAV multi-delivery (VRPU-TW&MD). A mixed integer linear programming (MILP) model is developed to mini-mize delivery costs while incorporating constraints related to UAV energy consumption. Subsequently, a micro-evolution aug-mented large neighborhood search (MEALNS) algorithm incor-porating adaptive large neighborhood search (ALNS) and micro-evolution mechanism is proposed. Numerical experiments demonstrate the effectiveness of both the model and algorithm in solving the VRPU-TW&MD. The impact of key parameters on delivery performance is explored by sensitivity analysis.
基金Fundamental Research Funds for the Central Universities(2024JBZX038)National Natural Science F oundation of China(62076023)。
文摘The rapid evolution of unmanned aerial vehicle(UAV)technology and autonomous capabilities has positioned UAV as promising last-mile delivery means.Vehicle and onboard UAV collaborative delivery is introduced as a novel delivery mode.Spatiotemporal collaboration,along with energy consumption with payload and wind conditions play important roles in delivery route planning.This paper introduces the traveling salesman problem with time window and onboard UAV(TSPTWOUAV)and emphasizes the consideration of real-world scenarios,focusing on time collaboration and energy consumption with wind and payload.To address this,a mixed integer linear programming(MILP)model is formulated to minimize the energy consumption costs of vehicle and UAV.Furthermore,an adaptive large neighborhood search(ALNS)algorithm is applied to identify high-quality solutions efficiently.The effectiveness of the proposed model and algorithm is validated through numerical tests on real geographic instances and sensitivity analysis of key parameters is conducted.
基金supported by the Aeronautical Science Foundation of China (20085584010)
文摘According to the characteristic of cruise missiles,navigation point setting is simplified,and the principle of route planning for saturation attack and a concept of reference route are put forward.With the help of the shortest-tangent idea in route-planning and the algorithm of back reasoning from targets,a reference route algorithm is built on the shortest range and threat avoidance.Then a route-flight-time algorithm is built on navigation points.Based on the conditions of multi-direction saturation attack,a route planning algorithm of multi-direction saturation attack is built on reference route,route-flight-time,and impact azimuth.Simulation results show that the algorithm can realize missiles fired in a salvo launch reaching the target simultaneously from different directions while avoiding threat.
基金supported by the National Natural Science Foundation of China(7147117571471174)
文摘Unmanned combat air vehicles(UCAVs) mission planning is a fairly complicated global optimum problem. Military attack missions often employ a fleet of UCAVs equipped with weapons to attack a set of known targets. A UCAV can carry different weapons to accomplish different combat missions. Choice of different weapons will have different effects on the final combat effectiveness. This work presents a mixed integer programming model for simultaneous weapon configuration and route planning of UCAVs, which solves the problem optimally using the IBM ILOG CPLEX optimizer for simple missions. This paper develops a heuristic algorithm to handle the medium-scale and large-scale problems. The experiments demonstrate the performance of the heuristic algorithm in solving the medium scale and large scale problems. Moreover, we give suggestions on how to select the most appropriate algorithm to solve different scale problems.
文摘As each type of satellite network has different link features, its data transmission must be designed based on its link features to improve the efficiency of data transferring. The transmission of navigation integrated services information (NISI) in a global navigation satellite system (GNSS) with inter-satellite links (ISLs) is studied by taking the real situation of inter-satellite communication links into account. An on-demand computing and buffering centralized route strategy is proposed based on dynamic grouping and the topology evolution law of the GNSS network within which the satellite nodes are operated in the manner of dynamic grouping. Dynamic grouping is based on satellites spatial relationships and the group role of the satellite node changes by turns due to its spatial relationships. The route strategy provides significant advantages of high efficiency, low complexity, and flexi- ble configuration, by which the established GNSS can possess the features and capabilities of feasible deployment, efficient transmission, convenient management, structural invulnerability and flexible expansion.
文摘A novel evolutionary route planner for aircraft is proposed in this paper. In the new planner, individual candidates are evaluated with respect to the workspace, thus the computation of the configuration space is not required. By using problem-specific chromosome structure and genetic operators, the routes are generated in real time, with different mission constraints such as minimum route leg length and flying altitude, maximum turning angle, maximum climbing/diving angle and route distance constraint taken into account.
基金Project(2009AA11Z220)supported by the National High Technology Research and Development Program of China
文摘Unmanned aerial vehicle(UAV)was introduced as a novel traffic device to collect road traffic information and its cruise route planning problem was considered.Firstly,a multi-objective optimization model was proposed aiming at minimizing the total cruise distance and the number of UAVs used,which used UAV maximum cruise distance,the number of UAVs available and time window of each monitored target as constraints.Then,a novel multi-objective evolutionary algorithm was proposed.Next,a case study with three time window scenarios was implemented.The results show that both the total cruise distance and the number of UAVs used continue to increase with the time window constraint becoming narrower.Compared with the initial optimal solutions,the optimal total cruise distance and the number of UAVs used fall by an average of 30.93% and 31.74%,respectively.Finally,some concerns using UAV to collect road traffic information were discussed.
基金Project(ZR2014FM036)supported by Shandong Provincial Natural Science Foundation of ChinaProject(ZR2010FZ001)supported by the Key Program of Shandong Provincial Natural Science Foundation of China
文摘In order to increase productivity and reduce energy consumption of steelmaking-continuous casting(SCC) production process, especially with complicated technological routes, the cross entropy(CE) method was adopted to optimize the SCC production scheduling(SCCPS) problem. Based on the CE method, a matrix encoding scheme was proposed and a backward decoding method was used to generate a reasonable schedule. To describe the distribution of the solution space, a probability distribution model was built and used to generate individuals. In addition, the probability updating mechanism of the probability distribution model was proposed which helps to find the optimal individual gradually. Because of the poor stability and premature convergence of the standard cross entropy(SCE) algorithm, the improved cross entropy(ICE) algorithm was proposed with the following improvements: individual generation mechanism combined with heuristic rules, retention mechanism of the optimal individual, local search mechanism and dynamic parameters of the algorithm. Simulation experiments validate that the CE method is effective in solving the SCCPS problem with complicated technological routes and the ICE algorithm proposed has superior performance to the SCE algorithm and the genetic algorithm(GA).
基金the Natural Science Foundation of Anhui Province of China (050420212)the Excellent Youth Science and Technology Foundation of Anhui Province of China (04042069).
文摘A quality of service (QoS) or constraint-based routing selection needs to find a path subject to multiple constraints through a network. The problem of finding such a path is known as the multi-constrained path (MCP) problem, and has been proven to be NP-complete that cannot be exactly solved in a polynomial time. The NPC problem is converted into a multiobjective optimization problem with constraints to be solved with a genetic algorithm. Based on the Pareto optimum, a constrained routing computation method is proposed to generate a set of nondominated optimal routes with the genetic algorithm mechanism. The convergence and time complexity of the novel algorithm is analyzed. Experimental results show that multiobjective evolution is highly responsive and competent for the Pareto optimum-based route selection. When this method is applied to a MPLS and metropolitan-area network, it will be capable of optimizing the transmission performance.
基金Project(2009AA11Z220)supported by National High Technology Research and Development Program of ChinaProjects(61070112,61070116)supported by the National Natural Science Foundation of China+1 种基金Project(2012LLYJTJSJ077)supported by the Ministry of Public Security of ChinaProject(KYQD14003)supported by Tianjin University of Technology and Education,China
文摘Unmanned aerial vehicle(UAV)was introduced to take road segment traffic surveillance.Considering the limited UAV maximum flight distance,UAV route planning problem was studied.First,a multi-objective optimization model of planning UAV route for road segment surveillance was proposed,which aimed to minimize UAV cruise distance and minimize the number of UAVs used.Then,an evolutionary algorithm based on Pareto optimality technique was proposed to solve multi-objective UAV route planning problem.At last,a UAV flight experiment was conducted to test UAV route planning effect,and a case with three scenarios was studied to analyze the impact of different road segment lengths on UAV route planning.The case results show that the optimized cruise distance and the number of UAVs used decrease by an average of 38.43% and 33.33%,respectively.Additionally,shortening or extending the length of road segments has different impacts on UAV route planning.
基金Project(51078086)supported by the National Natural Science Foundation of China
文摘The route optimization problem for road networks was applied to pedestrian flow.Evacuation path networks with nodes and arcs considering the traffic capacities of facilities were built in metro hubs,and a path impedance function for metro hubs which used the relationships among circulation speed,density and flow rate for pedestrians was defined.Then,a route optimization model which minimizes the movement time of the last evacuee was constructed to optimize evacuation performance.Solutions to the proposed mathematical model were obtained through an iterative optimization process.The route optimization model was applied to Xidan Station of Beijing Metro Line 4 based on the actual situations,and the calculation results of the model were tested using buildingExodus microscopic evacuation simulation software.The simulation result shows that the proposed model shortens the evacuation time by 16.05%,3.15% and 2.78% compared with all or none method,equally split method and Logit model,respectively.Furthermore,when the population gets larger,evacuation efficiency in the proposed model has a greater advantage.
基金Projects(61272139,61070199,61103182)supported by the National Natural Science Foundation of ChinaProject(2013ZX01028001-002)supported by the National Science and Technology Major Projects of China+1 种基金Project(2011AA01A103)supported by theNational High-Tech Research and Development Plan of ChinaProject(11JJ7003)supported by Hunan Provincial Natural ScienceFoundation of China
文摘In recent years,using message ferries as mechanical carriers of data has been shown to be an effective way to collect information in sparse wireless sensor networks.As the sensors are far away from each other in such highly partitioned scenario,a message ferry needs to travel a long route to access all the sensors and carry the data collected from the sensors to the sink.Typically,practical constraints(e.g.,the energy)preclude a ferry from visiting all sensors in a single tour.In such case,the ferry can only access part of the sensors in each tour and move back to the sink to get the energy refilled.So,the energy-constrained ferry route design(ECFRD)problem is discussed,which leads to the optimization problem of minimizing the total route length of the ferry,while keeping the route length of each tour below a given constraint.The ECFRD problem is proved to be NP-hard problem,and the integer linear programming(ILP)formulation is given.After that,efficient heuristic algorithms are proposed to solve this problem.The experimental results show that the performances of the proposed algorithms are effective in practice compared to the optimal solution.
基金Project(60925011) supported by the National Natural Science Foundation for Distinguished Young Scholars of ChinaProject(9140A06040510BQXXXX) supported by Advanced Research Foundation of General Armament Department,China
文摘To address the issue of premature convergence and slow convergence rate in three-dimensional (3D) route planning of unmanned aerial vehicle (UAV) low-altitude penetration,a novel route planning method was proposed.First and foremost,a coevolutionary multi-agent genetic algorithm (CE-MAGA) was formed by introducing coevolutionary mechanism to multi-agent genetic algorithm (MAGA),an efficient global optimization algorithm.A dynamic route representation form was also adopted to improve the flight route accuracy.Moreover,an efficient constraint handling method was used to simplify the treatment of multi-constraint and reduce the time-cost of planning computation.Simulation and corresponding analysis show that the planning results of CE-MAGA have better performance on terrain following,terrain avoidance,threat avoidance (TF/TA2) and lower route costs than other existing algorithms.In addition,feasible flight routes can be acquired within 2 s,and the convergence rate of the whole evolutionary process is very fast.
基金supportes by the National Nature Science Foundation o f China (71771215,62122093)。
文摘Unmanned air vehicles(UAVs) have been regularly employed in modern wars to conduct different missions. Instead of addressing mission planning and route planning separately,this study investigates the issue of joint mission and route planning for a fleet of UAVs. The mission planning determines the configuration of weapons in UAVs and the weapons to attack targets, while the route planning determines the UAV’s visiting sequence for the targets. The problem is formulated as an integer linear programming model. Due to the inefficiency of CPLEX on large scale optimization problems, an effective learningbased heuristic, namely, population based adaptive large neighborhood search(P-ALNS), is proposed to solve the model. In P-ALNS, seven neighborhood structures are designed and adaptively utilized in terms of their historical performance. The effectiveness and superiority of the proposed model and algorithm are demonstrated on test instances of small, medium and large sizes. In particular, P-ALNS achieves comparable solutions or as good as those of CPLEX on small-size(20 targets)instances in much shorter time.
文摘In this research paper, a routing problem of undirected networks has been solved. The problem was to determine the optimal routes of a telecommunication network. A heuristic approach has been adopted,due to the specific uature of the problem.The problem is only concerned withdistant(remote) nodes of the network which are indirectly linked through a single intermediate node.To determine the optimal routes,the devised heuristic has been coded in FORTRAN language. Forthe validation of developed heuristic,it has been implemented on two sample networks. Finally, ithas been applied to the actual(gived) network. The achieved results have proved its application insepcific networking problem. It can also enhance the effective utilization of available resources.