Efficient calculation of the electrostatic interactions including repulsive force between charged molecules in a biomolecule system or charged particles in a colloidal system is necessary for the molecular scale or pa...Efficient calculation of the electrostatic interactions including repulsive force between charged molecules in a biomolecule system or charged particles in a colloidal system is necessary for the molecular scale or particle scale mechanical analyses of these systems. The electrostatic repulsive force depends on the mid-plane potential between two charged particles. Previous analytical solutions of the mid-plane potential, including those based on simplified assumptions and modern mathematic methods, are reviewed. It is shown that none of these solutions applies to wide ranges of interparticle distance from 0 to 10 and surface potential from 1 to 10. Three previous analytical solutions are chosen to develop a semi-analytical solution which is proven to have more extensive applications. Furthermore, an empirical closed-form expression of mid-plane potential is proposed based on plenty of numerical solutions. This empirical solution has extensive applications, as well as high computational efficiency.展开更多
In this paper we focused on the mask technology of inductively coupled plasma(ICP) etching for the mesa fabrication of infrared focal plane arrays(FPA).By using the SiO_2 mask,the mesa has higher graphics transfer...In this paper we focused on the mask technology of inductively coupled plasma(ICP) etching for the mesa fabrication of infrared focal plane arrays(FPA).By using the SiO_2 mask,the mesa has higher graphics transfer accuracy and creates less micro-ripples in sidewalls.Comparing the IV characterization of detectors by using two different masks,the detector using the SiO_2 hard mask has the R_0A of 9.7×10~6 Ω·cm^2,while the detector using the photoresist mask has the R_0A of3.2 × 10~2 Ω·cm^2 in 77 K.After that we focused on the method of removing the remaining SiO_2 after mesa etching.The dry ICP etching and chemical buffer oxide etcher(BOE) based on HF and NH4 F are used in this part.Detectors using BOE only have closer R_0A to that using the combining method,but it leads to gaps on mesas because of the corrosion on AlSb layer by BOE.We finally choose the combining method and fabricated the 640×512 FPA.The FPA with cutoff wavelength of 4.8 μm has the average R_0A of 6.13 × 10~9 Ω·cm^2 and the average detectivity of 4.51 × 10~9 cm·Hz^(1/2).W^(-1)at 77 K.The FPA has good uniformity with the bad dots rate of 1.21%and the noise equivalent temperature difference(NEDT) of 22.9 mK operating at 77 K.展开更多
基金Project supported by the National Key Basic Research Program of China(Grant No.2012CB026103)the National Natural Science Foundation of China(Grant No.51009136)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK2011212)
文摘Efficient calculation of the electrostatic interactions including repulsive force between charged molecules in a biomolecule system or charged particles in a colloidal system is necessary for the molecular scale or particle scale mechanical analyses of these systems. The electrostatic repulsive force depends on the mid-plane potential between two charged particles. Previous analytical solutions of the mid-plane potential, including those based on simplified assumptions and modern mathematic methods, are reviewed. It is shown that none of these solutions applies to wide ranges of interparticle distance from 0 to 10 and surface potential from 1 to 10. Three previous analytical solutions are chosen to develop a semi-analytical solution which is proven to have more extensive applications. Furthermore, an empirical closed-form expression of mid-plane potential is proposed based on plenty of numerical solutions. This empirical solution has extensive applications, as well as high computational efficiency.
基金Project supported by the National Basic Research Program of China(Grant Nos.2014CB643903,2013CB932904,2012CB932701,and 2011CB922201)the National Special Funds for the Development of Major Research Equipment and Instruments,China(Grant No.2012YQ140005)+2 种基金the National Natural Science Foundation of China(Grant Nos.61274013,U1037602,61306013,and 61290303)the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB01010200)China Postdoctoral Science Foundation(Grant No.2014M561029)
文摘In this paper we focused on the mask technology of inductively coupled plasma(ICP) etching for the mesa fabrication of infrared focal plane arrays(FPA).By using the SiO_2 mask,the mesa has higher graphics transfer accuracy and creates less micro-ripples in sidewalls.Comparing the IV characterization of detectors by using two different masks,the detector using the SiO_2 hard mask has the R_0A of 9.7×10~6 Ω·cm^2,while the detector using the photoresist mask has the R_0A of3.2 × 10~2 Ω·cm^2 in 77 K.After that we focused on the method of removing the remaining SiO_2 after mesa etching.The dry ICP etching and chemical buffer oxide etcher(BOE) based on HF and NH4 F are used in this part.Detectors using BOE only have closer R_0A to that using the combining method,but it leads to gaps on mesas because of the corrosion on AlSb layer by BOE.We finally choose the combining method and fabricated the 640×512 FPA.The FPA with cutoff wavelength of 4.8 μm has the average R_0A of 6.13 × 10~9 Ω·cm^2 and the average detectivity of 4.51 × 10~9 cm·Hz^(1/2).W^(-1)at 77 K.The FPA has good uniformity with the bad dots rate of 1.21%and the noise equivalent temperature difference(NEDT) of 22.9 mK operating at 77 K.