The composite that can absorb the high-performance electromagnetic(EM) wave is constructed into a sandwiched structure composed of carbon black(CB)/ethylene-vinyl acetate(EVA) and Ag naowires(Ag NWs). The Ag N...The composite that can absorb the high-performance electromagnetic(EM) wave is constructed into a sandwiched structure composed of carbon black(CB)/ethylene-vinyl acetate(EVA) and Ag naowires(Ag NWs). The Ag NWs sandwiched between two CB/EVA layers are used to improve the absorption properties of composite. The effects of EVA-to-CB weight ratio, concentration and diameter of Ag NWs with a thickness of 0.4 mm on microwave absorption are investigated.The results indicate that for an EVA-to-CB weight ratio of 1:3, Ag NW concentration of 1.0 mg/100 m L, and average diameter of 56 nm, the reflection loss(RL) of the composite is below-10 d B in a frequency range of 9.3 Ghz–18.0 GHz, with the minimum values of-40.0 d B and-25.6 d B at 13.5 GHz and 15.3 GHz, respectively. A finite element method(FEM)is used for calculating the RL of the composite. The calculated results are in agreement with the experimental data.展开更多
The crystal structures, electronic structures and optical properties of nitrogen or/and praseodymium doped anatase TiO2 were calculated by first principles with the plane-wave ultrasoft pseudopotential method based on...The crystal structures, electronic structures and optical properties of nitrogen or/and praseodymium doped anatase TiO2 were calculated by first principles with the plane-wave ultrasoft pseudopotential method based on density functional theory. Highly efficient visible-light-induced nitrogen or/and praseodymium doped anatase TiO2 nanocrystal photocatalyst were synthesized by a microwave chemical method. The calculated results show that the photocatalytic activity of TiO2 can be enhanced by N doping or Pr doping, and can be further enhanced by N+Pr codoping. The band gap change of the codoping TiO2 is more obvious than that of the single ion doping, which results in the red shift of the optical absorption edges. The results are of great significance for the understanding and further development of visible-light response high activity modified TiO2 photocatalyst. The photocatalytic activity of the samples for methyl blue degradation was investigated under the irradiation of fluorescent light. The experimental results show that the codoping TiO2 photocatalytic activity is obviously higher than that of the single ion doping. The experimental results accord with the calculated results.展开更多
基金Project partly supported by the National Natural Science Foundation of China(Grant No.61275174)
文摘The composite that can absorb the high-performance electromagnetic(EM) wave is constructed into a sandwiched structure composed of carbon black(CB)/ethylene-vinyl acetate(EVA) and Ag naowires(Ag NWs). The Ag NWs sandwiched between two CB/EVA layers are used to improve the absorption properties of composite. The effects of EVA-to-CB weight ratio, concentration and diameter of Ag NWs with a thickness of 0.4 mm on microwave absorption are investigated.The results indicate that for an EVA-to-CB weight ratio of 1:3, Ag NW concentration of 1.0 mg/100 m L, and average diameter of 56 nm, the reflection loss(RL) of the composite is below-10 d B in a frequency range of 9.3 Ghz–18.0 GHz, with the minimum values of-40.0 d B and-25.6 d B at 13.5 GHz and 15.3 GHz, respectively. A finite element method(FEM)is used for calculating the RL of the composite. The calculated results are in agreement with the experimental data.
基金Project supported by the National Natural Science Foundation of China(Grant No.50862009)the New Century Excellent Talents in University of the Ministry of Education,China(Grant No.NCET-04-0915)the Natural Science Foundation of Yunnan Province of China(Grant No.2005E007M)
文摘The crystal structures, electronic structures and optical properties of nitrogen or/and praseodymium doped anatase TiO2 were calculated by first principles with the plane-wave ultrasoft pseudopotential method based on density functional theory. Highly efficient visible-light-induced nitrogen or/and praseodymium doped anatase TiO2 nanocrystal photocatalyst were synthesized by a microwave chemical method. The calculated results show that the photocatalytic activity of TiO2 can be enhanced by N doping or Pr doping, and can be further enhanced by N+Pr codoping. The band gap change of the codoping TiO2 is more obvious than that of the single ion doping, which results in the red shift of the optical absorption edges. The results are of great significance for the understanding and further development of visible-light response high activity modified TiO2 photocatalyst. The photocatalytic activity of the samples for methyl blue degradation was investigated under the irradiation of fluorescent light. The experimental results show that the codoping TiO2 photocatalytic activity is obviously higher than that of the single ion doping. The experimental results accord with the calculated results.