A new method to study the transient detection efficiency (DE) and pulse amplitude of superconducting nanowire single photon detectors (SNSPD) during the current recovery process is proposed -- statistically analyz...A new method to study the transient detection efficiency (DE) and pulse amplitude of superconducting nanowire single photon detectors (SNSPD) during the current recovery process is proposed -- statistically analyzing the single photon response under photon illumination with a high repetition rate. The transient DE results match well with the DEs deduced from the static current dependence of DE combined with the waveform of a single-photon detection event. This proves that static measurement results can be used to analyze the transient current recovery process after a detection event. The results are relevant for understanding the current recovery process of SNSPDs after a detection event and for determining the counting rate of SNSPDs.展开更多
基金Project supported by the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB04010200)the National Basic Research Program of China(Grant No.2011CBA00202)the National Natural Science Foundation of China(Grant No.61401441)
文摘A new method to study the transient detection efficiency (DE) and pulse amplitude of superconducting nanowire single photon detectors (SNSPD) during the current recovery process is proposed -- statistically analyzing the single photon response under photon illumination with a high repetition rate. The transient DE results match well with the DEs deduced from the static current dependence of DE combined with the waveform of a single-photon detection event. This proves that static measurement results can be used to analyze the transient current recovery process after a detection event. The results are relevant for understanding the current recovery process of SNSPDs after a detection event and for determining the counting rate of SNSPDs.