Ultra-thin flexible films have attracted wide attention because of their excellent ductility and potential versatility.In particular,the energy-harvesting films(EHFs)have become a research hotspot because of the indis...Ultra-thin flexible films have attracted wide attention because of their excellent ductility and potential versatility.In particular,the energy-harvesting films(EHFs)have become a research hotspot because of the indispensability of power source in various devices.However,the design and fabrication of such films that can capture or transform di erent types of energy from environments for multiple usages remains a challenge.Herein,the multifunctional flexible EHFs with e ective electro-/photo-thermal abilities are proposed by successive spraying Ag microparticles and MXene suspension between on waterborne polyurethane films,supplemented by a hot-pressing.The optimal coherent film exhibits a high electrical conductivity(1.17×10^(4)S m^(-1)),excellent Joule heating performance(121.3℃)at 2 V,and outstanding photo-thermal performance(66.2℃ within 70 s under 100 mW cm^(-1)).In addition,the EHFs-based single-electrode triboelectric nanogenerators(TENG)give short-circuit transferred charge of 38.9 nC,open circuit voltage of 114.7 V,and short circuit current of 0.82μA.More interestingly,the output voltage of TENG can be further increased via constructing the double triboelectrification layers.The comprehensive ability for harvesting various energies of the EHFs promises their potential to satisfy the corresponding requirements.展开更多
Si is a promising anode material for Li ion batteries because of its high specific capacity,abundant reserve,and low cost.However,its rate performance and cycling stability are poor due to the severe particle pulveriz...Si is a promising anode material for Li ion batteries because of its high specific capacity,abundant reserve,and low cost.However,its rate performance and cycling stability are poor due to the severe particle pulverization during the lithiation/delithiation process.The high stress induced by the Li concentration gradient and anisotropic deformation is the main reason for the fracture of Si particles.Here we present a new stress mitigation strategy by uniformly distributing small amounts of Sn and Sb in Si micron-sized particles,which reduces the Li concentration gradient and realizes an isotropic lithiation/delithiation process.The Si8.5Sn0.5Sb microparticles(mean particle size:8.22μm)show over 6000-fold and tenfold improvements in electronic conductivity and Li diffusivity than Si particles,respectively.The discharge capacities of the Si_(8.5)Sn_(0.5)Sb microparticle anode after 100 cycles at 1.0 and 3.0 A g^(-1)are 1.62 and 1.19 Ah g^(-1),respectively,corresponding to a retention rate of 94.2%and 99.6%,respectively,relative to the capacity of the first cycle after activation.Multicomponent microparticle anodes containing Si,Sn,Sb,Ge and Ag prepared using the same method yields an ultra-low capacity decay rate of 0.02%per cycle for 1000 cycles at 1 A g^(-1),corroborating the proposed mechanism.The stress regulation mechanism enabled by the industry-compatible fabrication methods opens up enormous opportunities for low-cost and high-energy-density Li-ion batteries.展开更多
Objective.To establish a flow cytometric internal standard method for counting platelet-derived microparti-cles(PMPs)and to study its clinical significance. Methods. PMPs suspension(platelet poor plasma,PPP) was extra...Objective.To establish a flow cytometric internal standard method for counting platelet-derived microparti-cles(PMPs)and to study its clinical significance. Methods. PMPs suspension(platelet poor plasma,PPP) was extracted by gradual centrifugation. According to the size of PMPs,3 μm and 0.8μm latex beads were used as internal standards for the quantitation. PMPs were counted by adjusting flow cytometric discrimination and voltage of forward scatter and side scatter. Results. In 30 healthy donors,the average concentration of resting PMPs was(1.2×105±5.7×104 )/ml and that of activated PMPs was(1.6×106±9.1×105)/ml. Compared with healthy donors,PMPs mean value was significantly higher(P< 0.001)in 18 patients with coronary artery disease,12 with acute cerebral infraction and 23 with chronic renal failure[the average PMPs concentration,( 6.1×105±2.5×105 )/ml, ( 6.8×105±3.4×105)/ml and(5.9×105±3.1×105)/ml respectively]. However,no significant difference in PMPs concentration was observed in 25 patients with acute leukemia and severe thrombocytopenia during the aplastic phase after chemotherapy [1.3×105±6.1×104)/ml,(P >0.05)] .Conclusions. PMPs is a useful indicator in monitoring platelet activation,and plays an important role in thrombotic disease. By flow cytometric internal standard method,PMPs can be counted rapidly and accurately,which may be very helpful in interlaboratory comparative studies.展开更多
Here, we report the construction of magnetic core-shell microparticles for oil removal with thermal driving regeneration property. Water-in-oil-in water (W/O/W) emulsions from microfluidics are used as templates to pr...Here, we report the construction of magnetic core-shell microparticles for oil removal with thermal driving regeneration property. Water-in-oil-in water (W/O/W) emulsions from microfluidics are used as templates to prepare core-shell microparticles with magnetic holed poly (ethoxylated trimethylolpropane triacrylate) (PETPTA) shells each containing a thermal-sensitive poly (N-Isopropylacrylamide) (PNIPAM) core. The microparticles could adsorb oil from water due to the special structure and be collected with a magnetic field. Then, the oil-filled microparticles would be regenerated by thermal stimulus, in which the inner PNIPAM microgels work as thermal-sensitive pistons to force out the adsorbed oil. At the same time, the adsorbed oil would be recycled by distillation. Furthermore, the adsorption capacity of the microparticles for oil keeps very stable after 1st cycle. The adsorption and regeneration performances of the microparticles are greatly affected by the size of the holes on the outer PETPTA shells, which could be precisely controlled by regulating the interfacial forces in W/O/W emulsion templates. The optimized core-shell microparticles show excellent oil adsorption and thermal driving regeneration performances nearly without secondary pollution, and would be a reliable green adsorption material for kinds of oil.展开更多
We investigate optical force on a graphene-coated gain microparticle by adopting the Maxwell's stress tensor method.It is found that there exists a threshold gain in obtaining the Fano-profile optical force which ...We investigate optical force on a graphene-coated gain microparticle by adopting the Maxwell's stress tensor method.It is found that there exists a threshold gain in obtaining the Fano-profile optical force which indicates the reversal of optical pushing and pulling force. And giant pushing/pulling force can be achieved if the gain value of the material is in the proximity of the threshold gain. Our results show that the threshold gain is more sensitive to the relaxation time than to the Fermi energy of the graphene. We further study the optical force on larger microparticle to demonstrate the pulling force occurring at octupole resonance with small gain value and then it will appear at quadrupole resonance by increasing gain value. Our work provides an in-depth insight into the interaction between light and gain material and gives the additional degree of freedom to optical manipulation of microparticle.展开更多
ZSM-5 zeolite microparticles (MPs) were synthesized under hydrothermal condition using a low crystal seed addition approach without template. The synthesis parameters such as the seed addition amount, the SiOJA1203 ...ZSM-5 zeolite microparticles (MPs) were synthesized under hydrothermal condition using a low crystal seed addition approach without template. The synthesis parameters such as the seed addition amount, the SiOJA1203 ratio, the aluminum source, the feeding addition method, aging, and crystallization were investigated. The structure, morphology and composition of the as-synthesized ZSM-5 zeolite MPs were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), laser particle size distribution (PSD) measurements, and inductively coupled plasma-atomic emission spectrometry (ICP-AES). The SIO2/A1203 ratio of ZSM-5 zeolite MPs was in the range of 20~80. The low seed addition was beneficial to improving the crystallinity and shortening the crystallization time, and the suitable amount of seed was 0.25% (SIO2). The ZSM-5 zeolite MPs synthesized with aluminium nitrate nonahydrate used as the aluminum source exhibited a relatively high crystallinity. An appropriate aging time could eliminate the effect of feeding addition method and effectively adjust particle size. The particle size of ZSM-5 zeolite obtained at an aging time of 20 h was around 2.0 I.tm. Prolonging the aging time appropriately could also shorten the high-temperature crystallization time. The suitable aging time was 24 h, and the relative crystallinity of ZSM-5 zeolite could reach up to 99% after crystallization for 24 h at 180 ℃展开更多
In this contribution, a comparative study of metallic cobalt micro and nanoparticles obtained in solution by four different chemical routes is reported. Classic routes such as borohydride reduction in aqueous media an...In this contribution, a comparative study of metallic cobalt micro and nanoparticles obtained in solution by four different chemical routes is reported. Classic routes such as borohydride reduction in aqueous media and the so-called polyol methodology were used to obtain the cobalt nanostructures to be studied. Using CTAB as surfactant, cobalt hollow nanostructures were obtained. The use of strong reducing agents, like sodium borohydride, favors the formation of quasi-monodispersed nanoparticles of about 2 nm size but accompanied with impurities; for hydrazine(a mild reducer), nanoparticles of larger size are obtained which organize in spherical microagglomerates. Valuable information on the particles thermal stability and on nature of the species anchored at their surface was obtained from thermogravimetric curves. The samples to be studied were characterized from UV-vis, IR, X-ray diffraction, and electron microscopy images(scanning and transmission).展开更多
基金National Natural Science Foundation of China(51803190)National Key R&D Program of China(2019YFA0706802)for financial support。
文摘Ultra-thin flexible films have attracted wide attention because of their excellent ductility and potential versatility.In particular,the energy-harvesting films(EHFs)have become a research hotspot because of the indispensability of power source in various devices.However,the design and fabrication of such films that can capture or transform di erent types of energy from environments for multiple usages remains a challenge.Herein,the multifunctional flexible EHFs with e ective electro-/photo-thermal abilities are proposed by successive spraying Ag microparticles and MXene suspension between on waterborne polyurethane films,supplemented by a hot-pressing.The optimal coherent film exhibits a high electrical conductivity(1.17×10^(4)S m^(-1)),excellent Joule heating performance(121.3℃)at 2 V,and outstanding photo-thermal performance(66.2℃ within 70 s under 100 mW cm^(-1)).In addition,the EHFs-based single-electrode triboelectric nanogenerators(TENG)give short-circuit transferred charge of 38.9 nC,open circuit voltage of 114.7 V,and short circuit current of 0.82μA.More interestingly,the output voltage of TENG can be further increased via constructing the double triboelectrification layers.The comprehensive ability for harvesting various energies of the EHFs promises their potential to satisfy the corresponding requirements.
基金This work was supported by the General Research Fund scheme of the Hong Kong Research Grants Council(Project No.15227121)the Hong Kong Polytechnic University(ZVGH).
文摘Si is a promising anode material for Li ion batteries because of its high specific capacity,abundant reserve,and low cost.However,its rate performance and cycling stability are poor due to the severe particle pulverization during the lithiation/delithiation process.The high stress induced by the Li concentration gradient and anisotropic deformation is the main reason for the fracture of Si particles.Here we present a new stress mitigation strategy by uniformly distributing small amounts of Sn and Sb in Si micron-sized particles,which reduces the Li concentration gradient and realizes an isotropic lithiation/delithiation process.The Si8.5Sn0.5Sb microparticles(mean particle size:8.22μm)show over 6000-fold and tenfold improvements in electronic conductivity and Li diffusivity than Si particles,respectively.The discharge capacities of the Si_(8.5)Sn_(0.5)Sb microparticle anode after 100 cycles at 1.0 and 3.0 A g^(-1)are 1.62 and 1.19 Ah g^(-1),respectively,corresponding to a retention rate of 94.2%and 99.6%,respectively,relative to the capacity of the first cycle after activation.Multicomponent microparticle anodes containing Si,Sn,Sb,Ge and Ag prepared using the same method yields an ultra-low capacity decay rate of 0.02%per cycle for 1000 cycles at 1 A g^(-1),corroborating the proposed mechanism.The stress regulation mechanism enabled by the industry-compatible fabrication methods opens up enormous opportunities for low-cost and high-energy-density Li-ion batteries.
文摘Objective.To establish a flow cytometric internal standard method for counting platelet-derived microparti-cles(PMPs)and to study its clinical significance. Methods. PMPs suspension(platelet poor plasma,PPP) was extracted by gradual centrifugation. According to the size of PMPs,3 μm and 0.8μm latex beads were used as internal standards for the quantitation. PMPs were counted by adjusting flow cytometric discrimination and voltage of forward scatter and side scatter. Results. In 30 healthy donors,the average concentration of resting PMPs was(1.2×105±5.7×104 )/ml and that of activated PMPs was(1.6×106±9.1×105)/ml. Compared with healthy donors,PMPs mean value was significantly higher(P< 0.001)in 18 patients with coronary artery disease,12 with acute cerebral infraction and 23 with chronic renal failure[the average PMPs concentration,( 6.1×105±2.5×105 )/ml, ( 6.8×105±3.4×105)/ml and(5.9×105±3.1×105)/ml respectively]. However,no significant difference in PMPs concentration was observed in 25 patients with acute leukemia and severe thrombocytopenia during the aplastic phase after chemotherapy [1.3×105±6.1×104)/ml,(P >0.05)] .Conclusions. PMPs is a useful indicator in monitoring platelet activation,and plays an important role in thrombotic disease. By flow cytometric internal standard method,PMPs can be counted rapidly and accurately,which may be very helpful in interlaboratory comparative studies.
基金This work was supported by the National Natural Science Foundation of China[grant numbers 21706219]。
文摘Here, we report the construction of magnetic core-shell microparticles for oil removal with thermal driving regeneration property. Water-in-oil-in water (W/O/W) emulsions from microfluidics are used as templates to prepare core-shell microparticles with magnetic holed poly (ethoxylated trimethylolpropane triacrylate) (PETPTA) shells each containing a thermal-sensitive poly (N-Isopropylacrylamide) (PNIPAM) core. The microparticles could adsorb oil from water due to the special structure and be collected with a magnetic field. Then, the oil-filled microparticles would be regenerated by thermal stimulus, in which the inner PNIPAM microgels work as thermal-sensitive pistons to force out the adsorbed oil. At the same time, the adsorbed oil would be recycled by distillation. Furthermore, the adsorption capacity of the microparticles for oil keeps very stable after 1st cycle. The adsorption and regeneration performances of the microparticles are greatly affected by the size of the holes on the outer PETPTA shells, which could be precisely controlled by regulating the interfacial forces in W/O/W emulsion templates. The optimized core-shell microparticles show excellent oil adsorption and thermal driving regeneration performances nearly without secondary pollution, and would be a reliable green adsorption material for kinds of oil.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11904184, 11847033, and 11704158)the Natural Science Foundation of Jiangsu Province,China (Grant No. BK20170170)。
文摘We investigate optical force on a graphene-coated gain microparticle by adopting the Maxwell's stress tensor method.It is found that there exists a threshold gain in obtaining the Fano-profile optical force which indicates the reversal of optical pushing and pulling force. And giant pushing/pulling force can be achieved if the gain value of the material is in the proximity of the threshold gain. Our results show that the threshold gain is more sensitive to the relaxation time than to the Fermi energy of the graphene. We further study the optical force on larger microparticle to demonstrate the pulling force occurring at octupole resonance with small gain value and then it will appear at quadrupole resonance by increasing gain value. Our work provides an in-depth insight into the interaction between light and gain material and gives the additional degree of freedom to optical manipulation of microparticle.
基金Financial support from the Innovation Fund for Elitists of Henan Province,China(No.0221001200)the Talent Training Joint Fund of NSFC-Henan(No.U1204203)the China Postdoctoral Science Foundation(No.2012M511121)
文摘ZSM-5 zeolite microparticles (MPs) were synthesized under hydrothermal condition using a low crystal seed addition approach without template. The synthesis parameters such as the seed addition amount, the SiOJA1203 ratio, the aluminum source, the feeding addition method, aging, and crystallization were investigated. The structure, morphology and composition of the as-synthesized ZSM-5 zeolite MPs were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), laser particle size distribution (PSD) measurements, and inductively coupled plasma-atomic emission spectrometry (ICP-AES). The SIO2/A1203 ratio of ZSM-5 zeolite MPs was in the range of 20~80. The low seed addition was beneficial to improving the crystallinity and shortening the crystallization time, and the suitable amount of seed was 0.25% (SIO2). The ZSM-5 zeolite MPs synthesized with aluminium nitrate nonahydrate used as the aluminum source exhibited a relatively high crystallinity. An appropriate aging time could eliminate the effect of feeding addition method and effectively adjust particle size. The particle size of ZSM-5 zeolite obtained at an aging time of 20 h was around 2.0 I.tm. Prolonging the aging time appropriately could also shorten the high-temperature crystallization time. The suitable aging time was 24 h, and the relative crystallinity of ZSM-5 zeolite could reach up to 99% after crystallization for 24 h at 180 ℃
基金partially supported by the Consejo Nacional de Ciencia y Tecnología(CONACYTMéxico)under Grant SEP-CONACyT 2009No.129048
文摘In this contribution, a comparative study of metallic cobalt micro and nanoparticles obtained in solution by four different chemical routes is reported. Classic routes such as borohydride reduction in aqueous media and the so-called polyol methodology were used to obtain the cobalt nanostructures to be studied. Using CTAB as surfactant, cobalt hollow nanostructures were obtained. The use of strong reducing agents, like sodium borohydride, favors the formation of quasi-monodispersed nanoparticles of about 2 nm size but accompanied with impurities; for hydrazine(a mild reducer), nanoparticles of larger size are obtained which organize in spherical microagglomerates. Valuable information on the particles thermal stability and on nature of the species anchored at their surface was obtained from thermogravimetric curves. The samples to be studied were characterized from UV-vis, IR, X-ray diffraction, and electron microscopy images(scanning and transmission).