Long-period fiber gratings have the advantages of small size,corrosion resistance,anti-electro-magnetic interference,and high sensitivity,making them widely used in biomedicine,the power industry,and aerospace.This pa...Long-period fiber gratings have the advantages of small size,corrosion resistance,anti-electro-magnetic interference,and high sensitivity,making them widely used in biomedicine,the power industry,and aerospace.This paper develops a long-period fiber grating sensor based on periodic microchannels.First,a series of linear structures were etched in the cladding of a single-mode fiber by femtosecond laser microma-chining.Then,the laser-modified region was selectively eroded by selective chemical etching to obtain the periodic microchannel structure.Finally,the channels were filled with polydimethylsiloxane(PDMS)to im-prove the spectral quality.The experimental results show that the sensor has good sensitivity in the measure-ment of various parameters such as temperature,stress,refractive index(RI),and bending.It has a temperat-ure sensitivity of−55.19 pm/℃,a strain sensitivity of−3.19 pm/με,a maximum refractive index sensitivity of 540.28 nm/RIU,and a bending sensitivity of 2.65 dB/m^(-1).All of the measurement parameters show good lin-ear responses.The sensor has strong application prospects in the field of precision measurement and sensing.展开更多
Multi-function,multiband,cost-effective,miniaturized reconfigurable radio frequency(RF)components are highly demanded in modern and future wireless communication systems.This paper discusses the needs and implementati...Multi-function,multiband,cost-effective,miniaturized reconfigurable radio frequency(RF)components are highly demanded in modern and future wireless communication systems.This paper discusses the needs and implementation of multiband reconfigurable RF components with microfabrication techniques and advanced materials.RF applications of fabrication methods such as surface and bulk micromachining techniques are reviewed,especially on the development of RF microelectromechanical systems(MEMS)and other tunable components.Works on the application of ferroelectric and ferromagnetic materials are investigated,which enables RF components with continuous tunability,reduced size,and enhanced performance.Methods and strategies with nano-patterning to improve high frequency characteristics of ferromagnetic thin film(e.g.,ferromagnetic resonance frequency and losses)and their applications on the development of fully electrically tunable RF components are fully demonstrated.展开更多
文摘Long-period fiber gratings have the advantages of small size,corrosion resistance,anti-electro-magnetic interference,and high sensitivity,making them widely used in biomedicine,the power industry,and aerospace.This paper develops a long-period fiber grating sensor based on periodic microchannels.First,a series of linear structures were etched in the cladding of a single-mode fiber by femtosecond laser microma-chining.Then,the laser-modified region was selectively eroded by selective chemical etching to obtain the periodic microchannel structure.Finally,the channels were filled with polydimethylsiloxane(PDMS)to im-prove the spectral quality.The experimental results show that the sensor has good sensitivity in the measure-ment of various parameters such as temperature,stress,refractive index(RI),and bending.It has a temperat-ure sensitivity of−55.19 pm/℃,a strain sensitivity of−3.19 pm/με,a maximum refractive index sensitivity of 540.28 nm/RIU,and a bending sensitivity of 2.65 dB/m^(-1).All of the measurement parameters show good lin-ear responses.The sensor has strong application prospects in the field of precision measurement and sensing.
基金Projects(1253929,1910853)supported by the National Natural Science Foundation of China。
文摘Multi-function,multiband,cost-effective,miniaturized reconfigurable radio frequency(RF)components are highly demanded in modern and future wireless communication systems.This paper discusses the needs and implementation of multiband reconfigurable RF components with microfabrication techniques and advanced materials.RF applications of fabrication methods such as surface and bulk micromachining techniques are reviewed,especially on the development of RF microelectromechanical systems(MEMS)and other tunable components.Works on the application of ferroelectric and ferromagnetic materials are investigated,which enables RF components with continuous tunability,reduced size,and enhanced performance.Methods and strategies with nano-patterning to improve high frequency characteristics of ferromagnetic thin film(e.g.,ferromagnetic resonance frequency and losses)and their applications on the development of fully electrically tunable RF components are fully demonstrated.