Microgravity science is an important branch of space science.Its major objective is to study the laws of materials movement in microgravity,as well as to reveal the influence of gravity on the movement of materials in...Microgravity science is an important branch of space science.Its major objective is to study the laws of materials movement in microgravity,as well as to reveal the influence of gravity on the movement of materials in different gravity environments.Application researches relevant to these basic studies are also important contents of microgravity science.The advanced subjects,to some extent,reflect the ability of human beings to understand nature and the R&D level in this field in various countries.In this paper,the recent progress and the latest achievements of microgravity science and application researches in China aboard space platforms such as the Core Capsule Tianhe of the China Space Station(CSS)and satellites,as well as utilizing ground-based short-term microgravity facilities such as the Drop Tower Beijing and TUFF,are summarized,which cover the following sub-disciplines:microgravity fluid physics,microgravity combustion science,space materials science,space fundamental physics,space bio-technology,and relevant space technology applications.展开更多
SJ-10 is a recoverable scientific experiment satellite specially for the space experiments of microgravity physics science and space life science.This mission was officially started on 31 December 2012,and the satelli...SJ-10 is a recoverable scientific experiment satellite specially for the space experiments of microgravity physics science and space life science.This mission was officially started on 31 December 2012,and the satellite was launched on 6 April 2016.This paper introduces briefly the SJ-10 mission,the progress of SJ-10 engineering and the project constitution of sciences experiments onboard SJ-10.The purpose of this mission is to discover the law of matter movement and the rule of life activity that cannot be discovered on the ground due to the existence of gravity,and to know the acting mechanism on organisms by the complex radiation of space that cannot be simulated on the ground.展开更多
The main progress of the research activities on microgravity fluid physics, combustion, biotechnology research and fundamental Physics in China are briefly summarized in the present paper. The major space missions and...The main progress of the research activities on microgravity fluid physics, combustion, biotechnology research and fundamental Physics in China are briefly summarized in the present paper. The major space missions and experimental results obtained on board the Chinese recoverable/nonrecoverable satellites and the Chinese manned spaceship named "Shen Zhou" are presented summarily. The recent main activities of the ground-based studies in China are introduced in brief.展开更多
Advances of microgravity sciences in China are introduced. The research works include ground-based study and space experiments. In the recent years, the main means still are theoretical analysis, numerical simulation,...Advances of microgravity sciences in China are introduced. The research works include ground-based study and space experiments. In the recent years, the main means still are theoretical analysis, numerical simulation, ground-based experiment, and short-time microgravity experiments of drop tower. Besides, many space experiment projects are arranged. SJ-10 recoverable satellite will carry out 19 scientific experiment projects. Nine of them are for microgravity Sciences. The other ways for space microgravity experiment are with the help of Chinese Shenzhou spacecraft, Chinese Tiangong space laboratory, and Chinese space station in the near future. The Chinese space station will become main platform of Chinese microgravity sciences experiment in space.展开更多
Since the 1 960 s,many successful space missions have highlighted the advantages and necessity of humans in the exploration of space,but scientists have long worried about the adverse effects of spaceflight on Astrona...Since the 1 960 s,many successful space missions have highlighted the advantages and necessity of humans in the exploration of space,but scientists have long worried about the adverse effects of spaceflight on Astronaut.Space flight and models that create conditions similar to those that occur during space flight have been shown to deleteriously affect a variety of immunological responses.The mechanisms and biomedical consequences of these changes remain to be established.Conducting experiments in an environment of true microgravity requires a roundtrip ticket into space,a feat that is both expensive and challenging.Simulated microgravity(SMG)models allow scientists to gather preliminary data without the cost and logistical challenges of spaceflight.The objective of the present study was to evaluate the effects of SMG on immunity function of macrophages that exposed to RPM and RCCS separately.While many studies have demonstrated that alterations occur in the immune system as a result of space travel,the level at which these mechanisms exert their effect,at the level of the mature immune cell or earlier at the progenitor or stem cell stage is not known.In particular,macrophages,as one of the most important immune cells and play a key role in both specific and non-specific immunity,did not have received much attention.Therefore,in our study,we mainly study the influence of microgravity on the immune function of macrophages.In this study,we evaluated the immune dysfunction of macrophages under SMG.Firstly,we found that the morphology and structure of the macrophages were changed,specifically,we observed that there were more protrusions on cell surface and the cells were shrinking significantly after exposure to SMG.Secondly,we demonstrated that under simulated microgravity(SMG)conditions,the phagocytic and proliferative functions of macrophages were significantly reduced.Thirdly,several processes,including surface receptor expression,cytoskeleton,and cytokines secreted were investigated in macrophages under SMG.Phagocytosis is one of the important means for macrophages to exert immune function,and cell surface phagocytosis-related receptors play an important role.Here,we selected four common receptors(TLR2,FcyR1,CD11b and CD 18)to detect.The results indicate that SMG(RPM and RCCS)have a great influence on the expression of surface phagocytosis-related receptors,which may be one of the main reasons for the decline of immune function ofmacrophages.Macrophages exert immune function through phagocytosis,and the cytoskeleton plays an important role in the process of phagocytosis.The results indicate that SMG(RPM and RCCS)have a great influence on the expression of cytoskeleton-related proteins,which provides me with a new idea that SMG may regulate immunity of macrophage by affecting the cytoskeleton.Immune-related cytokines play an important role in macrophage immune process.Here,we selected four common immunocytokine(TNF-α,IL-1β,IL-6 and IL-10)to detect.The change of these four immunocytokine further demonstrate that SMG significantly decline the immunity of macrophage,we must pay enough attention to the impact of SMG on macrophage.The above factors such as the changes of morphology and structure of the macrophages and the decreased expression of Arp2/3 complex related proteins,cytokine secretion,and cell surface receptors may be responsible for the immune dysfunction of macrophages under SMG.展开更多
Gravitropic curvature growth of Arabidopsis hypocotyls mainly occurred in the rapid growing Elongation Zone(EZI),not in the slow-growing Elongation Zone(EZII).By examining reorientation of Microtubules(MT)and phenotyp...Gravitropic curvature growth of Arabidopsis hypocotyls mainly occurred in the rapid growing Elongation Zone(EZI),not in the slow-growing Elongation Zone(EZII).By examining reorientation of Microtubules(MT)and phenotype of the cell wall in the EZI and the EZII of Arabidopsis hypocotyls under normal gravitational condition,it is found that MTs in the rapid growing epidermal cells were mainly in the transverse direction,while those in the non-growing epidermal cells were in the longitudinal directions.However,this difference in cortical MT arrays between the EZI and EZII cells disappeared when the seedlings were exposed to the simulated microgravity condition on a horizontal clinostat.Field emission scanning electron microscopy revealed that the surface texture of epidermal cells,like the direction of the MT,in the EZI and the EZII also became similar when exposed to the simulated microgravity condition.This result indicated that simulate microgravity could modify the potential differentiation between the EZI and the EZII by affecting the orientation of cortical MT in the epidermal cells.展开更多
During 2012–2014, the main research activities from microgravity material research were focused on, which include study of microgravity effects on collagen fibrillogenesis and HAP crystallization, microgravity experi...During 2012–2014, the main research activities from microgravity material research were focused on, which include study of microgravity effects on collagen fibrillogenesis and HAP crystallization, microgravity experiments using drop tube, and research of thermoelectric materials for space.This paper summarizes all these activities.展开更多
Research on materials under microgravity in China began in the 1980s, sparked by Prof. Lanying Lin (academician of CAS), Prof. Xiji Wang (academician of CAS), Prof. Guirong Min (academician of CAS), and Prof. Huabao L...Research on materials under microgravity in China began in the 1980s, sparked by Prof. Lanying Lin (academician of CAS), Prof. Xiji Wang (academician of CAS), Prof. Guirong Min (academician of CAS), and Prof. Huabao Lin (academician of CAS), and others. The first semiconductor crystal, first optical crystal, and first alloys were grown in space on board a recoverable satellite in 1987. Since then, microgravity materials science became a new scientific branch in China.Scientific and technical activities on space crystal growth and solidification are carried out through two major programs: ground-based studies and orbital experiments. The main results obtained during 2001-2003 are reported below.展开更多
The virtual absence of gravity-dependent phenomena in microgravity allows an in-depth understanding of fundamental events that are normally obscured and therefore are difficult to study quantitatively on Earth.Of part...The virtual absence of gravity-dependent phenomena in microgravity allows an in-depth understanding of fundamental events that are normally obscured and therefore are difficult to study quantitatively on Earth.Of particular interest is that the low-gravity environment aboard space provides a unique platform to synthesize alloys of semiconductors with homogeneous composition distributions,on both the macroscopic and microscopic scales,due to the much reduced buoyancy-driven convection.On the other hand,the easy realization of detached solidification in microgravity suppresses the formation of defects such as dislocations and twins,and thereby the crystallographic perfection is greatly increased.Moreover,the microgravity condition offers the possibilities to elucidate the liquid/solid interfacial structures,as well as clarify the microstructure evolution path of the metal alloys(or composites)during the solidification process.Motivated by these facts,growths of compound semiconductors and metal alloys were carried out under microgravity by using the drop tube,or on the scientific platforms of Tiangong-2 and SJ-10.The following illustrates the main results.展开更多
The main studying activities and results on space materials science during 1996-1997 in China were summarized. The typical research subjects are crystal growth from melt, crystal growth from solution, nucleation, unde...The main studying activities and results on space materials science during 1996-1997 in China were summarized. The typical research subjects are crystal growth from melt, crystal growth from solution, nucleation, undercooling,solidification of alloys and space experimental hardware. They are carried out by the ground-based studies, the short duration microgravity missions and orbital experiments.展开更多
The human exploration of space is one of the great voyages of discovery in human history. For over forty years space exploration, human have gotten more profound knowledge about outer space and life phenomena, ranging...The human exploration of space is one of the great voyages of discovery in human history. For over forty years space exploration, human have gotten more profound knowledge about outer space and life phenomena, ranging from understanding and recognizing space to adapting and utilizing space. With these development, space medicine that aimed at studying effect of space environment on human health and ensuring the safety, health and effective working of human in space exploration, will become increasingly improved and matured.The contents of research will develop from the early phenomena observation of the effect of space environment on human physiology and biochemistry, and the effect definition, to the study of the mechanism of changes of cell, molecule, and gene, from the passive adaptation for space environment to taking the initiative countermeasures, in order to ensure the safety, health and effective working of astronauts during space flight.Space practices in the past forty years have confirmed that a variety of physiological and pathological changes have been found for organism exposed to space flight. These changes include cardiovascular dysfunction, bone loss,muscle atrophy, decline of immune function, endocrine function disorder and space motion sickness. In recent years, more attention has been focused on the study of the mechanism of these changes, especially the effects of space environment on cell, molecule and its gene expression. With the demand of China's manned space engineering task and continuous development, a series of studies on medical problem caused by space environment have been carried out.展开更多
The DGW-I is a new material processing facility developed in China,which was firstly carried into orbit in November 1999 by the SZ-1 spacecraft and then in January 2001 carried by SZ-2 into space again,and successfull...The DGW-I is a new material processing facility developed in China,which was firstly carried into orbit in November 1999 by the SZ-1 spacecraft and then in January 2001 carried by SZ-2 into space again,and successfully processed 6 samples of materials,including 3 samples of alloys,2 of semiconductors and 1 sample of oxide crystal.展开更多
Subsurface cavities are very susceptible subsurface locations for down-lifting of a dam construction.In order to detect the low-density zones of a power plant a micro-gravity survey was conducted in a site considered ...Subsurface cavities are very susceptible subsurface locations for down-lifting of a dam construction.In order to detect the low-density zones of a power plant a micro-gravity survey was conducted in a site considered for construction of a power plant site in Iran.First we gain the residual anomalies through bouger anomalies and then we design an Artificial Neural Network(ANN)which is trained by a set of training data.The ANN was tested for both synthetic and real data.For real data some suitable features are derivate from residual anomalies and applied to展开更多
Chinese scientists paid great attention to the study about space life science in 1996-1997.Several biomedical experiments in this field were completed in Chinese recoverable satellites or in a Russian biosatellite. Th...Chinese scientists paid great attention to the study about space life science in 1996-1997.Several biomedical experiments in this field were completed in Chinese recoverable satellites or in a Russian biosatellite. The effect of microgravity and space radiation on Chinese silkworm eggs, plants, seeds and tomato DNA mutation was investigated in space. Head down bed rest of human body was applied to simulate weightlessness to study cardiovascular function, electrogastrogram,thermoregulation on the ground. Space motion sickness was also studied by means of swinging, optokinetic stimulation on the ground.展开更多
The advances of protein crystal growth in microgravity are limited by its low success rate of space crystallization experiments. Our recent efforts have concentrated on exploration of the ways to increase the success ...The advances of protein crystal growth in microgravity are limited by its low success rate of space crystallization experiments. Our recent efforts have concentrated on exploration of the ways to increase the success rate of the experiments.The corresponding studies include structural comparisons of space- and Earthgrown protein crystals, numerical simulations of solute transport in protein crystallizer, optimization of protein crystailization conditions and improvement of crystallization techniques used. These studies show that the success rate of space protein crystallization could be improved by different ways.展开更多
In the past two years, space life science research in China is characterized by a wide area of basic researches for providing foundation for the future China Space Station. The effect of microgravity and radiation was...In the past two years, space life science research in China is characterized by a wide area of basic researches for providing foundation for the future China Space Station. The effect of microgravity and radiation was further studied from physiology phenomena to the level of bio-molecule mechanisms. Chinese space life science is maturing in a new era of comprehensive development.Here, we review and summarize researches on space life sciences which were contributed by Chinese scientists.展开更多
Recent progresses in 2018–2019 from space experiments onboard SJ-10 recoverable satellite and on parabolic flight were summarized,mainly focusing on cell mechano-biological coupling under microgravity.In the meantime...Recent progresses in 2018–2019 from space experiments onboard SJ-10 recoverable satellite and on parabolic flight were summarized,mainly focusing on cell mechano-biological coupling under microgravity.In the meantime,technical pre-research and experimental system design for the biomechanics research platform on China Space Station was carried out and updated.展开更多
In the past two years,China’s space life science has made great progress.Space biomedical and life science programs have carried out ground-based research for the first batch of projects,and are preparing to carry ou...In the past two years,China’s space life science has made great progress.Space biomedical and life science programs have carried out ground-based research for the first batch of projects,and are preparing to carry out space-based experiments along with the construction of China’s space station.And space life science payload of the space station completed the development of positive samples.Thus,with the development of lunar exploration and Mars exploration projects,astrobiology research has also made a lot of basic achievements.On the basis of summarizing the development of space life science in China,this paper mainly introduces the important progress of payload technology and life science research.展开更多
With the further advancement of China’s major manned spaceflight project,the national space laboratory was successfully built.China has also made considerable progress and breakthroughs in the field of space life sci...With the further advancement of China’s major manned spaceflight project,the national space laboratory was successfully built.China has also made considerable progress and breakthroughs in the field of space life sciences.This paper reviews the related biological effects under space flight conditions,mainly including epigenetic effects,skeleton remodeling and peripheral body fluid circulation effects,as well as the research and application of space life science related biotechnology in the field of microbial culture and biological regeneration life support system.展开更多
Crystal Growth in space is a crystalline process with long Period microgravity conditions.So far,on earth there are some facilities,such as DroP Tube,Drop Tower,Ballon,Sounding Rochets and Aircraft etc.They provide th...Crystal Growth in space is a crystalline process with long Period microgravity conditions.So far,on earth there are some facilities,such as DroP Tube,Drop Tower,Ballon,Sounding Rochets and Aircraft etc.They provide the microgravity conditions with the range of period from seconds to minutes.展开更多
文摘Microgravity science is an important branch of space science.Its major objective is to study the laws of materials movement in microgravity,as well as to reveal the influence of gravity on the movement of materials in different gravity environments.Application researches relevant to these basic studies are also important contents of microgravity science.The advanced subjects,to some extent,reflect the ability of human beings to understand nature and the R&D level in this field in various countries.In this paper,the recent progress and the latest achievements of microgravity science and application researches in China aboard space platforms such as the Core Capsule Tianhe of the China Space Station(CSS)and satellites,as well as utilizing ground-based short-term microgravity facilities such as the Drop Tower Beijing and TUFF,are summarized,which cover the following sub-disciplines:microgravity fluid physics,microgravity combustion science,space materials science,space fundamental physics,space bio-technology,and relevant space technology applications.
基金Supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA04020000)United Funding from National Natural Science Foundation of China and Chinese Academy of Sciences。
文摘SJ-10 is a recoverable scientific experiment satellite specially for the space experiments of microgravity physics science and space life science.This mission was officially started on 31 December 2012,and the satellite was launched on 6 April 2016.This paper introduces briefly the SJ-10 mission,the progress of SJ-10 engineering and the project constitution of sciences experiments onboard SJ-10.The purpose of this mission is to discover the law of matter movement and the rule of life activity that cannot be discovered on the ground due to the existence of gravity,and to know the acting mechanism on organisms by the complex radiation of space that cannot be simulated on the ground.
文摘The main progress of the research activities on microgravity fluid physics, combustion, biotechnology research and fundamental Physics in China are briefly summarized in the present paper. The major space missions and experimental results obtained on board the Chinese recoverable/nonrecoverable satellites and the Chinese manned spaceship named "Shen Zhou" are presented summarily. The recent main activities of the ground-based studies in China are introduced in brief.
文摘Advances of microgravity sciences in China are introduced. The research works include ground-based study and space experiments. In the recent years, the main means still are theoretical analysis, numerical simulation, ground-based experiment, and short-time microgravity experiments of drop tower. Besides, many space experiment projects are arranged. SJ-10 recoverable satellite will carry out 19 scientific experiment projects. Nine of them are for microgravity Sciences. The other ways for space microgravity experiment are with the help of Chinese Shenzhou spacecraft, Chinese Tiangong space laboratory, and Chinese space station in the near future. The Chinese space station will become main platform of Chinese microgravity sciences experiment in space.
文摘Since the 1 960 s,many successful space missions have highlighted the advantages and necessity of humans in the exploration of space,but scientists have long worried about the adverse effects of spaceflight on Astronaut.Space flight and models that create conditions similar to those that occur during space flight have been shown to deleteriously affect a variety of immunological responses.The mechanisms and biomedical consequences of these changes remain to be established.Conducting experiments in an environment of true microgravity requires a roundtrip ticket into space,a feat that is both expensive and challenging.Simulated microgravity(SMG)models allow scientists to gather preliminary data without the cost and logistical challenges of spaceflight.The objective of the present study was to evaluate the effects of SMG on immunity function of macrophages that exposed to RPM and RCCS separately.While many studies have demonstrated that alterations occur in the immune system as a result of space travel,the level at which these mechanisms exert their effect,at the level of the mature immune cell or earlier at the progenitor or stem cell stage is not known.In particular,macrophages,as one of the most important immune cells and play a key role in both specific and non-specific immunity,did not have received much attention.Therefore,in our study,we mainly study the influence of microgravity on the immune function of macrophages.In this study,we evaluated the immune dysfunction of macrophages under SMG.Firstly,we found that the morphology and structure of the macrophages were changed,specifically,we observed that there were more protrusions on cell surface and the cells were shrinking significantly after exposure to SMG.Secondly,we demonstrated that under simulated microgravity(SMG)conditions,the phagocytic and proliferative functions of macrophages were significantly reduced.Thirdly,several processes,including surface receptor expression,cytoskeleton,and cytokines secreted were investigated in macrophages under SMG.Phagocytosis is one of the important means for macrophages to exert immune function,and cell surface phagocytosis-related receptors play an important role.Here,we selected four common receptors(TLR2,FcyR1,CD11b and CD 18)to detect.The results indicate that SMG(RPM and RCCS)have a great influence on the expression of surface phagocytosis-related receptors,which may be one of the main reasons for the decline of immune function ofmacrophages.Macrophages exert immune function through phagocytosis,and the cytoskeleton plays an important role in the process of phagocytosis.The results indicate that SMG(RPM and RCCS)have a great influence on the expression of cytoskeleton-related proteins,which provides me with a new idea that SMG may regulate immunity of macrophage by affecting the cytoskeleton.Immune-related cytokines play an important role in macrophage immune process.Here,we selected four common immunocytokine(TNF-α,IL-1β,IL-6 and IL-10)to detect.The change of these four immunocytokine further demonstrate that SMG significantly decline the immunity of macrophage,we must pay enough attention to the impact of SMG on macrophage.The above factors such as the changes of morphology and structure of the macrophages and the decreased expression of Arp2/3 complex related proteins,cytokine secretion,and cell surface receptors may be responsible for the immune dysfunction of macrophages under SMG.
基金Supported by the China Manned Space Flight Technology Project TG-2the National Natural Science Foundation of China(31670864)+2 种基金the National Natural Fund Joint Fund Project(U1738106)the Strategic Pioneer Projects of CAS(XDA15013900)the National Science Foundation for Young Scientists of China(31500687)
文摘Gravitropic curvature growth of Arabidopsis hypocotyls mainly occurred in the rapid growing Elongation Zone(EZI),not in the slow-growing Elongation Zone(EZII).By examining reorientation of Microtubules(MT)and phenotype of the cell wall in the EZI and the EZII of Arabidopsis hypocotyls under normal gravitational condition,it is found that MTs in the rapid growing epidermal cells were mainly in the transverse direction,while those in the non-growing epidermal cells were in the longitudinal directions.However,this difference in cortical MT arrays between the EZI and EZII cells disappeared when the seedlings were exposed to the simulated microgravity condition on a horizontal clinostat.Field emission scanning electron microscopy revealed that the surface texture of epidermal cells,like the direction of the MT,in the EZI and the EZII also became similar when exposed to the simulated microgravity condition.This result indicated that simulate microgravity could modify the potential differentiation between the EZI and the EZII by affecting the orientation of cortical MT in the epidermal cells.
文摘During 2012–2014, the main research activities from microgravity material research were focused on, which include study of microgravity effects on collagen fibrillogenesis and HAP crystallization, microgravity experiments using drop tube, and research of thermoelectric materials for space.This paper summarizes all these activities.
文摘Research on materials under microgravity in China began in the 1980s, sparked by Prof. Lanying Lin (academician of CAS), Prof. Xiji Wang (academician of CAS), Prof. Guirong Min (academician of CAS), and Prof. Huabao Lin (academician of CAS), and others. The first semiconductor crystal, first optical crystal, and first alloys were grown in space on board a recoverable satellite in 1987. Since then, microgravity materials science became a new scientific branch in China.Scientific and technical activities on space crystal growth and solidification are carried out through two major programs: ground-based studies and orbital experiments. The main results obtained during 2001-2003 are reported below.
基金Supports by the National Natural Science Foundation of China(U1738114)the Strategic Priority Research Program on Space Science,the Chinese Academy of Sciences(XDA15051200)+1 种基金the China's Manned Space Station Project(TGJZ800-2-RW024)the Chinese manned space flight pre-research project(030302)
文摘The virtual absence of gravity-dependent phenomena in microgravity allows an in-depth understanding of fundamental events that are normally obscured and therefore are difficult to study quantitatively on Earth.Of particular interest is that the low-gravity environment aboard space provides a unique platform to synthesize alloys of semiconductors with homogeneous composition distributions,on both the macroscopic and microscopic scales,due to the much reduced buoyancy-driven convection.On the other hand,the easy realization of detached solidification in microgravity suppresses the formation of defects such as dislocations and twins,and thereby the crystallographic perfection is greatly increased.Moreover,the microgravity condition offers the possibilities to elucidate the liquid/solid interfacial structures,as well as clarify the microstructure evolution path of the metal alloys(or composites)during the solidification process.Motivated by these facts,growths of compound semiconductors and metal alloys were carried out under microgravity by using the drop tube,or on the scientific platforms of Tiangong-2 and SJ-10.The following illustrates the main results.
文摘The main studying activities and results on space materials science during 1996-1997 in China were summarized. The typical research subjects are crystal growth from melt, crystal growth from solution, nucleation, undercooling,solidification of alloys and space experimental hardware. They are carried out by the ground-based studies, the short duration microgravity missions and orbital experiments.
文摘The human exploration of space is one of the great voyages of discovery in human history. For over forty years space exploration, human have gotten more profound knowledge about outer space and life phenomena, ranging from understanding and recognizing space to adapting and utilizing space. With these development, space medicine that aimed at studying effect of space environment on human health and ensuring the safety, health and effective working of human in space exploration, will become increasingly improved and matured.The contents of research will develop from the early phenomena observation of the effect of space environment on human physiology and biochemistry, and the effect definition, to the study of the mechanism of changes of cell, molecule, and gene, from the passive adaptation for space environment to taking the initiative countermeasures, in order to ensure the safety, health and effective working of astronauts during space flight.Space practices in the past forty years have confirmed that a variety of physiological and pathological changes have been found for organism exposed to space flight. These changes include cardiovascular dysfunction, bone loss,muscle atrophy, decline of immune function, endocrine function disorder and space motion sickness. In recent years, more attention has been focused on the study of the mechanism of these changes, especially the effects of space environment on cell, molecule and its gene expression. With the demand of China's manned space engineering task and continuous development, a series of studies on medical problem caused by space environment have been carried out.
文摘The DGW-I is a new material processing facility developed in China,which was firstly carried into orbit in November 1999 by the SZ-1 spacecraft and then in January 2001 carried by SZ-2 into space again,and successfully processed 6 samples of materials,including 3 samples of alloys,2 of semiconductors and 1 sample of oxide crystal.
文摘Subsurface cavities are very susceptible subsurface locations for down-lifting of a dam construction.In order to detect the low-density zones of a power plant a micro-gravity survey was conducted in a site considered for construction of a power plant site in Iran.First we gain the residual anomalies through bouger anomalies and then we design an Artificial Neural Network(ANN)which is trained by a set of training data.The ANN was tested for both synthetic and real data.For real data some suitable features are derivate from residual anomalies and applied to
文摘Chinese scientists paid great attention to the study about space life science in 1996-1997.Several biomedical experiments in this field were completed in Chinese recoverable satellites or in a Russian biosatellite. The effect of microgravity and space radiation on Chinese silkworm eggs, plants, seeds and tomato DNA mutation was investigated in space. Head down bed rest of human body was applied to simulate weightlessness to study cardiovascular function, electrogastrogram,thermoregulation on the ground. Space motion sickness was also studied by means of swinging, optokinetic stimulation on the ground.
文摘The advances of protein crystal growth in microgravity are limited by its low success rate of space crystallization experiments. Our recent efforts have concentrated on exploration of the ways to increase the success rate of the experiments.The corresponding studies include structural comparisons of space- and Earthgrown protein crystals, numerical simulations of solute transport in protein crystallizer, optimization of protein crystailization conditions and improvement of crystallization techniques used. These studies show that the success rate of space protein crystallization could be improved by different ways.
文摘In the past two years, space life science research in China is characterized by a wide area of basic researches for providing foundation for the future China Space Station. The effect of microgravity and radiation was further studied from physiology phenomena to the level of bio-molecule mechanisms. Chinese space life science is maturing in a new era of comprehensive development.Here, we review and summarize researches on space life sciences which were contributed by Chinese scientists.
基金Supported by Strategic Priority Research Program and Frontier Science Key Project of Chinese Academy of Sciences(XDA04020202-17,XDA04020416,XDA15014100QYZDJSSW-JSC018),National Natural Science Foundation of China(U1738115)。
文摘Recent progresses in 2018–2019 from space experiments onboard SJ-10 recoverable satellite and on parabolic flight were summarized,mainly focusing on cell mechano-biological coupling under microgravity.In the meantime,technical pre-research and experimental system design for the biomechanics research platform on China Space Station was carried out and updated.
基金Supported by Space Medical Experiment Project of China Manned Space Program(HYZHXM02003)。
文摘In the past two years,China’s space life science has made great progress.Space biomedical and life science programs have carried out ground-based research for the first batch of projects,and are preparing to carry out space-based experiments along with the construction of China’s space station.And space life science payload of the space station completed the development of positive samples.Thus,with the development of lunar exploration and Mars exploration projects,astrobiology research has also made a lot of basic achievements.On the basis of summarizing the development of space life science in China,this paper mainly introduces the important progress of payload technology and life science research.
文摘With the further advancement of China’s major manned spaceflight project,the national space laboratory was successfully built.China has also made considerable progress and breakthroughs in the field of space life sciences.This paper reviews the related biological effects under space flight conditions,mainly including epigenetic effects,skeleton remodeling and peripheral body fluid circulation effects,as well as the research and application of space life science related biotechnology in the field of microbial culture and biological regeneration life support system.
文摘Crystal Growth in space is a crystalline process with long Period microgravity conditions.So far,on earth there are some facilities,such as DroP Tube,Drop Tower,Ballon,Sounding Rochets and Aircraft etc.They provide the microgravity conditions with the range of period from seconds to minutes.