Filtration is a prevalent treatment modality in the domain of wastewater management.Depending on the materials and properties of the filtration media,filtration can be classified into four main categories:microfiltrat...Filtration is a prevalent treatment modality in the domain of wastewater management.Depending on the materials and properties of the filtration media,filtration can be classified into four main categories:microfiltration,ultrafiltration,nanofiltration,and reverse osmosis.The present study focuses on the preparation of a novel porous CaCO_(3)microfiltration membrane,which is based on the microbial-induced calcium carbonate precipitation(MICP)biomineralization process.Initially,CaCO_(3) crystal particles with urease activity are prepared by controlling the MICP mineralization process.Secondary microbial mineralization is used to cement the loose calcium carbonate particles,forming a continuous porous solid CaCO_(3)membrane with certain mechanical strength.Filtration tests on bacterial cells,extracellular proteins,and polysaccharides show that the MICP-driven porous CaCO_(3) membrane effectively removes Escherichia coli,Brachybacterium sp.,and activated sludge,with removal rates of 99.998%,99.983%,and 99.996%,respectively.Compared to conventional filter paper,this porous CaCO_(3) membrane demonstrates superior capability in removing extracellular polymers(EPS).Furthermore,the CaCO_(3) microfiltration membrane prepared using the MICP process also exhibits ideal pore space,non-blocking characteristics,and high permeability.展开更多
基金Jiangsu Province Key Project of Research and Development Plan(No.BE2020676)Nantong Science and Technology Project(No.MS22021006)。
文摘Filtration is a prevalent treatment modality in the domain of wastewater management.Depending on the materials and properties of the filtration media,filtration can be classified into four main categories:microfiltration,ultrafiltration,nanofiltration,and reverse osmosis.The present study focuses on the preparation of a novel porous CaCO_(3)microfiltration membrane,which is based on the microbial-induced calcium carbonate precipitation(MICP)biomineralization process.Initially,CaCO_(3) crystal particles with urease activity are prepared by controlling the MICP mineralization process.Secondary microbial mineralization is used to cement the loose calcium carbonate particles,forming a continuous porous solid CaCO_(3)membrane with certain mechanical strength.Filtration tests on bacterial cells,extracellular proteins,and polysaccharides show that the MICP-driven porous CaCO_(3) membrane effectively removes Escherichia coli,Brachybacterium sp.,and activated sludge,with removal rates of 99.998%,99.983%,and 99.996%,respectively.Compared to conventional filter paper,this porous CaCO_(3) membrane demonstrates superior capability in removing extracellular polymers(EPS).Furthermore,the CaCO_(3) microfiltration membrane prepared using the MICP process also exhibits ideal pore space,non-blocking characteristics,and high permeability.