Long-period fiber gratings have the advantages of small size,corrosion resistance,anti-electro-magnetic interference,and high sensitivity,making them widely used in biomedicine,the power industry,and aerospace.This pa...Long-period fiber gratings have the advantages of small size,corrosion resistance,anti-electro-magnetic interference,and high sensitivity,making them widely used in biomedicine,the power industry,and aerospace.This paper develops a long-period fiber grating sensor based on periodic microchannels.First,a series of linear structures were etched in the cladding of a single-mode fiber by femtosecond laser microma-chining.Then,the laser-modified region was selectively eroded by selective chemical etching to obtain the periodic microchannel structure.Finally,the channels were filled with polydimethylsiloxane(PDMS)to im-prove the spectral quality.The experimental results show that the sensor has good sensitivity in the measure-ment of various parameters such as temperature,stress,refractive index(RI),and bending.It has a temperat-ure sensitivity of−55.19 pm/℃,a strain sensitivity of−3.19 pm/με,a maximum refractive index sensitivity of 540.28 nm/RIU,and a bending sensitivity of 2.65 dB/m^(-1).All of the measurement parameters show good lin-ear responses.The sensor has strong application prospects in the field of precision measurement and sensing.展开更多
Soft polymer optical fiber(SPOF)has shown great potential in optical-based wearable and implantable biosensors due to its excellent mechanical properties and optical guiding characteristics.However,the multimodality c...Soft polymer optical fiber(SPOF)has shown great potential in optical-based wearable and implantable biosensors due to its excellent mechanical properties and optical guiding characteristics.However,the multimodality characteristics of SPOF limit their integration with traditional fiber optic sensors.This article introduces for the first time a flexible fiber optic vibration sensor based on laser interference technology,which can be applied to vibration measurement under high stretch conditions.This sensor utilizes elastic optical fibers made of polydimethylsiloxane(PDMS)as sensing elements,combined with phase generating carrier technology,to achieve vibration measurement at 50−260 Hz within the stretch range of 0−42%.展开更多
Aiming at the requirement for high-precision tilt monitoring in the field of structural health monitoring(SHM),this paper proposes a sensitivity-enhanced tilt sensor based on a femtosecond fiber Bragg grating(FBG).Fir...Aiming at the requirement for high-precision tilt monitoring in the field of structural health monitoring(SHM),this paper proposes a sensitivity-enhanced tilt sensor based on a femtosecond fiber Bragg grating(FBG).Firstly,structural design of the tilt sensor was conducted based on static mechanics principles.By positioning the FBG away from the beam’s neutral axis,linear strain enhancement in the FBG was achieved,thereby improving sensor sensitivity.The relationship between FBG strain,applied force,and the offset distance from the neutral axis was established,determining the optimal distance corresponding to maximum strain.Based on this optimization scheme,a prototype of the tilt sensor was designed,fabricated,and experimentally tested.Experimental results show that the FBG offset distance yielding maximum sensitivity is 4.4 mm.Within a tilt angle range of−30°to 30°,the sensor achieved a sensitivity of 129.95 pm/°and a linearity of 0.9997.Compared to conventional FBG-based tilt sensors,both sensitivity and linearity were significantly improved.Furthermore,the sensor demonstrated excellent repeatability(error<0.94%),creep resistance(error<0.30%),and temperature stability(error<0.90%).These results demonstrate the sensor’s excellent potential for SHM applications.The sensor has been successfully deployed in an underground pipeline project,conducting long-term monitoring of tilt and deformation in the steel support structures,further proving its value for engineering safety monitoring.展开更多
The improved cross-correlation algorithm for the strain demodulation of Vernier-effect-based optical fiber sensor(VE-OFS)is proposed in this article.The algorithm identifies the most similar spectrum to the measured o...The improved cross-correlation algorithm for the strain demodulation of Vernier-effect-based optical fiber sensor(VE-OFS)is proposed in this article.The algorithm identifies the most similar spectrum to the measured one from the database of the collected spectra by employing the cross-correlation operation,subsequently deriving the predicted value via weighted calculation.As the algorithm uses the complete information in the measured raw spectrum,more accurate results and larger measurement range can be obtained.Additionally,the improved cross-correlation algorithm also has the potential to improve the measurement speed compared to current standards due to the possibility for the collection using low sampling rate.This work presents an important algorithm towards a simpler,faster way to improve the demodulation performance of VE-OFS.展开更多
As a representative transition metal dichalcogenides(TMD),NiTe_(2)has an ultra-fast optical response,high carrier mobility,and excellent environmental stability.It has a broad application prospect in the fields of ene...As a representative transition metal dichalcogenides(TMD),NiTe_(2)has an ultra-fast optical response,high carrier mobility,and excellent environmental stability.It has a broad application prospect in the fields of ener-gy,biomedicine,optoelectronic devices,and so on.At present,there have been scant reports on the application of NiTe_(2)in the field of ultrafast photonics.In this work,NiTe_(2)was synthesized by chemical vapor deposition(CVD)and integrated with a tapered optical fiber to achieve mode-locking in an erbium-doped fiber laser(EDFL)and a thu-lium-doped fiber laser(TDFL).The mode-locked EDFL exhibited a pulse width of 678 fs and an output power of 3.92 mW.The pulse width of mode-locked TDFL was estimated to have a pulse width of 694 fs with an output power of 21.64 mW.These results demonstrate that NiTe_(2)is an effective saturable absorber material with potential applica-tions in the field of ultrafast optics.展开更多
The mechanical behaviour of Titanium-based Fiber Metal Laminates(FMLs)reinforced with Kevlar,Jute and the novel woven(Kevlar+Jute)fiber mat were evaluated through tensile,flexural,Charpy impact,and drop-weight tests.T...The mechanical behaviour of Titanium-based Fiber Metal Laminates(FMLs)reinforced with Kevlar,Jute and the novel woven(Kevlar+Jute)fiber mat were evaluated through tensile,flexural,Charpy impact,and drop-weight tests.The FMLs were fabricated with various stacking configurations(2/1,3/2,4/3,and 5/4)to examine their influence on mechanical properties.Kevlar-reinforced laminates consistently demonstrated superior tensile and flexural strengths,with the highest tensile strength of 772 MPa observed in the 3/2 configuration,attributed to Kevlar's excellent load-bearing capacity.Jute-reinforced laminates exhibited lower performance due to poor bonding and early delamination,while the FMLs reinforced with woven(Kevlar+Jute)fiber mat achieved a balance between mechanical strength and cost-effectiveness by attaining a tensile strength of 718 MPa in the 3/2 configuration.Impact energy absorption results revealed that Kevlar-reinforced FMLs provided the highest energy absorption under Charpy tests,reaching 13.5 J in the 3/2 configuration.The 4/3 configu ration exhibited superior resistance under drop-weight impacts,absorbing 104.7 J of energy.Failure analysis using SEM revealed key mechanisms such as fiber debonding,delamination,and fiber pull-out,with increased severity observed in laminates with a higher number of fiber-epoxy layers,especially in the 5/4 configuration.This study highlights the potential of Kevlar-Jute hybrid fiber-reinforced FMLs for applications requiring high mechanical performance and impact resistance.Future research should explore advanced surface treatments and the environmental durability of these laminates for aerospace and automotive applications.展开更多
Background GOSSYM is a mechanistic,process-based cotton model that can simulate cotton crop growth and development,yield,and fiber quality.Its fiber quality module was developed based on controlled experiments explici...Background GOSSYM is a mechanistic,process-based cotton model that can simulate cotton crop growth and development,yield,and fiber quality.Its fiber quality module was developed based on controlled experiments explicitly conducted on the Texas Marker^(-1)(TM1)variety,potentially making its functional equations more aligned with this cultivar.To assess the model’s broader applicability,this study analyzed fiber quality data from 40 upland cotton cultivars,including TM1.The measured fiber quality from all cultivars was then compared with the modelsimulated fiber quality.Results Among the 40 upland cultivars,fiber strength varied from 28.4 cN·tex^(-1) to 34.6 cN·tex^(-1),fiber length ranged from 27.1 mm to 33.3 mm,micronaire value ranged from 2.7 to 4.6,and length uniformity index varied from 82.3%to 85.5%.The model simulated fiber quality closely matched the measured values for TM1,with the absolute percentage error(APE)being less than 0.92%for fiber strength,fiber length,and length uniformity index and 4.7%for micronaire.However,significant differences were observed for the other cultivars.The Pearson correlation coefficient(r)between the measured and simulated values was negative for all fiber quality traits,and Wilmotts’s index of agreement(WIA)was below 0.45,indicating a strong model bias toward TM1 without incorporating cultivar-specific parameters.After incorporating cultivar-specific parameters,the model’s performance improved significantly,with an average r-value of 0.84 and WIA of 0.88.Conclusions The adopted methodology and estimated cultivar-specific parameters improved the model’s simulation accuracy.This approach can be applied to newer cotton cultivars,enhancing the GOSSYM model’s utility and its applicability for agricultural management and policy decisions.展开更多
Basalt fibers/7075 aluminum matrix composites were studied to meet the demand of aluminum alloy drill pipes for material wear resistance.The composites with different basalt fiber additions were prepared by hot presse...Basalt fibers/7075 aluminum matrix composites were studied to meet the demand of aluminum alloy drill pipes for material wear resistance.The composites with different basalt fiber additions were prepared by hot pressed sintering and hot extrusion.The mechanical properties as well as friction and wear properties of the composites were studied by microstructure analysis,tensile experiments,friction and wear experiments.The results showed that basalt fibers were oriented and uniformly distributed and led to local grain refinement in the alloy matrix.The hardness and elongation of the composites were improved.The friction coefficient of the composites increased and then decreased,and the maximum wear depth and wear amount decreased,then increased,then decreased again with the growth of basalt fiber addition.Meanwhile,the inclusion of basalt fibers mitigated the uneven wear of the extruded 7075 aluminum alloy.The value of wear depth difference of 7075-0.2BF was the smallest,and that of 7075-2.0BF was close to it.The maximum wear depth and wear volume the 7075-0.2BF and 7075-2.0BF were also the smallest.The inhibition of uneven wear by basalt fibers enhanced of wear resistance for 7075 aluminum alloy,which has reference significance for improving the performance of aluminum alloy drill pipes.展开更多
In this paper,a conventional soliton(CS)mode-locked erbium-doped fiber(EDF)laser was de-veloped using MAX phase material(MAX-PM)Nb_(4)AlC_(3)as a saturable absorber(SA).First,the liquid phase exfoliation(LPE)method wa...In this paper,a conventional soliton(CS)mode-locked erbium-doped fiber(EDF)laser was de-veloped using MAX phase material(MAX-PM)Nb_(4)AlC_(3)as a saturable absorber(SA).First,the liquid phase exfoliation(LPE)method was utilized to prepare Nb_(4)AlC_(3)nanosheets,and then a piece of tapered fiber was adopted to fabricate Nb_(4)AlC_(3)-SA.It was found that the saturation intensity and modulation depth of the Nb_(4)AlC_(3)-SA are 2.02 MW/cm^(2)and 1.88%.Based on the Nb_(4)AlC_(3)-SA,a conventional soliton(CS)mode-locked EDF laser was achieved.The central wavelength,pulse duration,and pulse repetition rate were found to be 1565.65 nm,615.37 fs,and 24.63 MHz,respectively.The performance is competitive and particularly superior in terms of pulse duration.This study fully confirms that Nb_(4)AlC_(3)possesses marvellous nonlinear saturable absorption properties and opens new possibilities for further research on air-stable ultrafast photon-ic devices.展开更多
Vibration-induced bias deviation,which is generated by intensity fluctuations and additional phase differences,is one of the vital errors for fiber optic gyroscopes(FOGs)operating in vibration environment and has seve...Vibration-induced bias deviation,which is generated by intensity fluctuations and additional phase differences,is one of the vital errors for fiber optic gyroscopes(FOGs)operating in vibration environment and has severely restricted the applications of high-precision FOGs.The conventional methods for suppressing vibration-induced errors mostly concentrate on reinforcing the mechanical structure and optical path as well as the compensation under some specific operation parameters,which have very limited effects for high-precision FOGs maintaining performances under vibration.In this work,a technique of suppressing the vibration-induced bias deviation through removing the part related to the varying gain from the rotation-rate output is put forward.Particularly,the loop gain is extracted out by adding a gain-monitoring wave.By demodulating the loop gain and the rotation rate simultaneously under distinct frequencies and investigating their quantitative relationship,the vibrationinduced bias error is compensated without limiting the operating parameters or environments,like the applied modulation depth.The experimental results show that the proposed method has achieved the reduction of bias error from about 0.149°/h to0.014°/h during the random vibration with frequencies from20 Hz to 2000 Hz.This technique provides a feasible route for enhancing the performances of high-precision FOGs heading towards high environmental adaptability.展开更多
The cemented-gangue-fly-ash backfill(CGFB)prepared from coal-based solid waste materials commonly exhibits high brittleness,leading to an increased susceptibility to cracking.Uniaxial compressive strength(UCS),acousti...The cemented-gangue-fly-ash backfill(CGFB)prepared from coal-based solid waste materials commonly exhibits high brittleness,leading to an increased susceptibility to cracking.Uniaxial compressive strength(UCS),acoustic emission(AE),and scanning electron microscopy tests were conducted on CGFB samples with recycled steel fiber(RSF)contents of 0,0.5%,1.0%and 1.5%to assess the mechanical properties and damage evolution law of the CGFB.The research findings indicate that:1)When RSF contents were 0.5%,1%,and 1.5%,respectively,compared to samples without RSF,the UCS decreased by 3.86%,6.76%,and 15.59%,while toughness increased by 69%,98%,and 123%;2)The addition of RSFs reduced the post-peak stress energy activity and increased the fluctuations in the b-value;3)As the RSF dosage increased from 0 to 1.5%,the per unit dissipated strain energy increased from 5.84 to 21.51,and the post-peak released energy increased from 15.07 to 33.76,indicating that the external energy required for the CGFB sample to fail increased;4)The hydration products,such as C-S-H gel,ettringite,and micro-particle materials,were embedded in the damaged areas of the RSFs,increasing the frictional force at the interface between the RSF and CGFB matrix.The shape variability of the RSFs caused interlocking between the RSFs and the matrix.Both mechanisms strengthened the bridging effect of the RSFs in the CGFB,thereby improving the damage resistance capability of CGFB.The excellent damage resistance occurred at an RSF content of 0.5%;thus,this content is recommended for engineering applications.展开更多
This research addresses the growing demand for high-performance protective materials against high-velocity projectile impacts.The performance of multi-layered steel fiber-reinforced mortar(SFRM)panels with varying thi...This research addresses the growing demand for high-performance protective materials against high-velocity projectile impacts.The performance of multi-layered steel fiber-reinforced mortar(SFRM)panels with varying thicknesses and air gaps,was experimentally investigated under single and repeated impacts of 7.62×51 mm bullets fired from a distance of 50 m.The impact events were recorded using a high-speed camera at 40000 fps.Panel performance was assessed in terms of failure modes,kinetic energy absorption,spalling diameter,and percentage of back-face damage area,and weight loss.Results showed that panel configuration significantly influenced performance.Panel P10,with 70 mm SFRM thickness and 20 mm air gaps,provided the highest resistance,dissipating 5223 J of kinetic energy and preventing back-face damage.In contrast,P7,which absorbed 4476 J,presented a back damage area percentage of 8.93%after three impacts.Weight loss analysis further confirmed durability improvements,with P10 showing only 1.53%cumulative loss compared to 3.26%in P7.The inclusion of wider air gaps enhanced energy dissipation and reduced damage.Comparison between single and repeated impacts demonstrated the sustained resistance of high-performance panels,with P10 maintaining minimal degradation across three consecutive impacts.These findings highlight the potential of multi-layer SFRM panels to enhance ballistic resistance,making them suitable for military,security,and civilian protective applications requiring long-term durability.展开更多
This study was designed to enhance the soft clayey soil treatment effects using an innovative mechanochemically activated geopolymer(GP)through the optimized inclusion of nano-metakaolin(NM)and polypropylene fiber.The...This study was designed to enhance the soft clayey soil treatment effects using an innovative mechanochemically activated geopolymer(GP)through the optimized inclusion of nano-metakaolin(NM)and polypropylene fiber.The study also investigated the possible improvements in the binding ability of GP stabilization under different curing regimes.To this end,binders including lime alone,LG(slag-based geopolymer),LGNM(nano-modified LG with NM)and LGNMF(LGNM/fiber)mixture were separately added to soft soil samples.The fabricated composites were then subjected to a set of macro and micro level tests.The results indicated that,adding LG binary with a 20%NM replacement can lead to a significant increase(by nearly 21 times)in soil strength and a remarkable decline(about 70%)in the compression index.In fact,NM can play a great role in accelerating the rate of hydration reactions and forming a densely packed fabric,which staggeringly improve the soil hydromechanical attributes.It was also observed that raising the curing temperature will effectively augment the polymerization kinetics,leading to a substantial increase(~2 times)in the soil solidification process.However,the stabilized composites containing NM may reveal a brittle nature under more intense stress.Such a potential drawback seems to be resolved by the integration of fibers within the matrix.LGNM combined with fiber would boost(≥10 times)the energy absorption capacity of the soil,notably enhancing its residual strength.Overall,LGNMF may not only feature a broader range of benefits(inc.economic,technical,environmental)compared to traditional binders but also promote the ductility of the GP materials.展开更多
Many researchers have focused on the behavior of fiber-reinforced concrete(FRC)in the construction of various defensive structures to resist against impact forces resulting from explosions and projectiles.However,the ...Many researchers have focused on the behavior of fiber-reinforced concrete(FRC)in the construction of various defensive structures to resist against impact forces resulting from explosions and projectiles.However,the lack of sufficient research regarding the resistance of functionally graded fiber-reinforced concrete against projectile impacts has resulted in a limited understanding of the performance of this concrete type,which is necessary for the design and construction of structures requiring great resistance against external threats.Here,the performance of functionally graded fiber-reinforced concrete against projectile impacts was investigated experimentally using a(two-stage light)gas gun and a drop weight testing machine.For this objective,12 mix designs,with which 35 cylindrical specimens and 30 slab specimens were made,were prepared,and the main variables were the magnetite aggregate vol%(55%)replacing natural coarse aggregate,steel fiber vol%,and steel fiber type(3D and 5D).The fibers were added at six vol%of 0%,0.5%,0.75%,1%,1.25%,and 1.5%in 10 specimen series(three identical specimens per each series)with dimensions of 40×40×7.5 cm and functional grading(three layers),and the manufactured specimens were subjected to the drop weight impact and projectile penetration tests by the drop weight testing machine and gas gun,respectively,to assess their performance.Parameters under study included the compressive strength,destruction level,and penetration depth.The experimental results demonstrate that using the magnetite aggregate instead of the natural coarse aggregate elevated the compressive strength of the concrete by 61%.In the tests by the drop weight machine,it was observed that by increasing the total vol%of the fibers,especially by increasing the fiber content in the outer layers(impact surface),the cracking resistance and energy absorption increased by around 100%.Note that the fiber geometry had little effect on the energy absorption in the drop weight test.Investigating the optimum specimens showed that using 3D steel fibers at a total fiber content of 1 vol%,consisting of a layered grading of 1.5 vol%,0 vol%,and 1.5 vol%,improved the penetration depth by 76%and lowered the destruction level by 85%.In addition,incorporating the 5D steel fibers at a total fiber content of 1 vol%,consisting of the layered fiber contents of 1.5%,0%,and 1.5%,improved the projectile penetration depth by 50%and lowered the damage level by 61%compared with the case of using the 3D fibers.展开更多
As the core component of inertial navigation systems, fiber optic gyroscope (FOG), with technical advantages such as low power consumption, long lifespan, fast startup speed, and flexible structural design, are widely...As the core component of inertial navigation systems, fiber optic gyroscope (FOG), with technical advantages such as low power consumption, long lifespan, fast startup speed, and flexible structural design, are widely used in aerospace, unmanned driving, and other fields. However, due to the temper-ature sensitivity of optical devices, the influence of environmen-tal temperature causes errors in FOG, thereby greatly limiting their output accuracy. This work researches on machine-learn-ing based temperature error compensation techniques for FOG. Specifically, it focuses on compensating for the bias errors gen-erated in the fiber ring due to the Shupe effect. This work pro-poses a composite model based on k-means clustering, sup-port vector regression, and particle swarm optimization algo-rithms. And it significantly reduced redundancy within the sam-ples by adopting the interval sequence sample. Moreover, met-rics such as root mean square error (RMSE), mean absolute error (MAE), bias stability, and Allan variance, are selected to evaluate the model’s performance and compensation effective-ness. This work effectively enhances the consistency between data and models across different temperature ranges and tem-perature gradients, improving the bias stability of the FOG from 0.022 °/h to 0.006 °/h. Compared to the existing methods utiliz-ing a single machine learning model, the proposed method increases the bias stability of the compensated FOG from 57.11% to 71.98%, and enhances the suppression of rate ramp noise coefficient from 2.29% to 14.83%. This work improves the accuracy of FOG after compensation, providing theoretical guid-ance and technical references for sensors error compensation work in other fields.展开更多
文摘Long-period fiber gratings have the advantages of small size,corrosion resistance,anti-electro-magnetic interference,and high sensitivity,making them widely used in biomedicine,the power industry,and aerospace.This paper develops a long-period fiber grating sensor based on periodic microchannels.First,a series of linear structures were etched in the cladding of a single-mode fiber by femtosecond laser microma-chining.Then,the laser-modified region was selectively eroded by selective chemical etching to obtain the periodic microchannel structure.Finally,the channels were filled with polydimethylsiloxane(PDMS)to im-prove the spectral quality.The experimental results show that the sensor has good sensitivity in the measure-ment of various parameters such as temperature,stress,refractive index(RI),and bending.It has a temperat-ure sensitivity of−55.19 pm/℃,a strain sensitivity of−3.19 pm/με,a maximum refractive index sensitivity of 540.28 nm/RIU,and a bending sensitivity of 2.65 dB/m^(-1).All of the measurement parameters show good lin-ear responses.The sensor has strong application prospects in the field of precision measurement and sensing.
文摘Soft polymer optical fiber(SPOF)has shown great potential in optical-based wearable and implantable biosensors due to its excellent mechanical properties and optical guiding characteristics.However,the multimodality characteristics of SPOF limit their integration with traditional fiber optic sensors.This article introduces for the first time a flexible fiber optic vibration sensor based on laser interference technology,which can be applied to vibration measurement under high stretch conditions.This sensor utilizes elastic optical fibers made of polydimethylsiloxane(PDMS)as sensing elements,combined with phase generating carrier technology,to achieve vibration measurement at 50−260 Hz within the stretch range of 0−42%.
文摘Aiming at the requirement for high-precision tilt monitoring in the field of structural health monitoring(SHM),this paper proposes a sensitivity-enhanced tilt sensor based on a femtosecond fiber Bragg grating(FBG).Firstly,structural design of the tilt sensor was conducted based on static mechanics principles.By positioning the FBG away from the beam’s neutral axis,linear strain enhancement in the FBG was achieved,thereby improving sensor sensitivity.The relationship between FBG strain,applied force,and the offset distance from the neutral axis was established,determining the optimal distance corresponding to maximum strain.Based on this optimization scheme,a prototype of the tilt sensor was designed,fabricated,and experimentally tested.Experimental results show that the FBG offset distance yielding maximum sensitivity is 4.4 mm.Within a tilt angle range of−30°to 30°,the sensor achieved a sensitivity of 129.95 pm/°and a linearity of 0.9997.Compared to conventional FBG-based tilt sensors,both sensitivity and linearity were significantly improved.Furthermore,the sensor demonstrated excellent repeatability(error<0.94%),creep resistance(error<0.30%),and temperature stability(error<0.90%).These results demonstrate the sensor’s excellent potential for SHM applications.The sensor has been successfully deployed in an underground pipeline project,conducting long-term monitoring of tilt and deformation in the steel support structures,further proving its value for engineering safety monitoring.
文摘The improved cross-correlation algorithm for the strain demodulation of Vernier-effect-based optical fiber sensor(VE-OFS)is proposed in this article.The algorithm identifies the most similar spectrum to the measured one from the database of the collected spectra by employing the cross-correlation operation,subsequently deriving the predicted value via weighted calculation.As the algorithm uses the complete information in the measured raw spectrum,more accurate results and larger measurement range can be obtained.Additionally,the improved cross-correlation algorithm also has the potential to improve the measurement speed compared to current standards due to the possibility for the collection using low sampling rate.This work presents an important algorithm towards a simpler,faster way to improve the demodulation performance of VE-OFS.
基金Supported by Guangdong Basic and Applied Basic Research Fund,China(2024A1515012429)。
文摘As a representative transition metal dichalcogenides(TMD),NiTe_(2)has an ultra-fast optical response,high carrier mobility,and excellent environmental stability.It has a broad application prospect in the fields of ener-gy,biomedicine,optoelectronic devices,and so on.At present,there have been scant reports on the application of NiTe_(2)in the field of ultrafast photonics.In this work,NiTe_(2)was synthesized by chemical vapor deposition(CVD)and integrated with a tapered optical fiber to achieve mode-locking in an erbium-doped fiber laser(EDFL)and a thu-lium-doped fiber laser(TDFL).The mode-locked EDFL exhibited a pulse width of 678 fs and an output power of 3.92 mW.The pulse width of mode-locked TDFL was estimated to have a pulse width of 694 fs with an output power of 21.64 mW.These results demonstrate that NiTe_(2)is an effective saturable absorber material with potential applica-tions in the field of ultrafast optics.
基金the aid of Research and Development Fund-Seed Money provided by Vel Tech Rangarajan Dr.Sagunthala R&D Institute of Science and Technology。
文摘The mechanical behaviour of Titanium-based Fiber Metal Laminates(FMLs)reinforced with Kevlar,Jute and the novel woven(Kevlar+Jute)fiber mat were evaluated through tensile,flexural,Charpy impact,and drop-weight tests.The FMLs were fabricated with various stacking configurations(2/1,3/2,4/3,and 5/4)to examine their influence on mechanical properties.Kevlar-reinforced laminates consistently demonstrated superior tensile and flexural strengths,with the highest tensile strength of 772 MPa observed in the 3/2 configuration,attributed to Kevlar's excellent load-bearing capacity.Jute-reinforced laminates exhibited lower performance due to poor bonding and early delamination,while the FMLs reinforced with woven(Kevlar+Jute)fiber mat achieved a balance between mechanical strength and cost-effectiveness by attaining a tensile strength of 718 MPa in the 3/2 configuration.Impact energy absorption results revealed that Kevlar-reinforced FMLs provided the highest energy absorption under Charpy tests,reaching 13.5 J in the 3/2 configuration.The 4/3 configu ration exhibited superior resistance under drop-weight impacts,absorbing 104.7 J of energy.Failure analysis using SEM revealed key mechanisms such as fiber debonding,delamination,and fiber pull-out,with increased severity observed in laminates with a higher number of fiber-epoxy layers,especially in the 5/4 configuration.This study highlights the potential of Kevlar-Jute hybrid fiber-reinforced FMLs for applications requiring high mechanical performance and impact resistance.Future research should explore advanced surface treatments and the environmental durability of these laminates for aerospace and automotive applications.
基金supported by United States Department of Agriculture,Agricultural Research Service(No.58-8042-9-072)United States Department of Agriculture-National Institute of Food and Agriculture(No.2019-34263-30552)+1 种基金Management Information System(No.043050)United States Department of Agriculture-Agricultural Research Service-Non-Assistance Cooperative Agreement(No.58-6066-2-030).
文摘Background GOSSYM is a mechanistic,process-based cotton model that can simulate cotton crop growth and development,yield,and fiber quality.Its fiber quality module was developed based on controlled experiments explicitly conducted on the Texas Marker^(-1)(TM1)variety,potentially making its functional equations more aligned with this cultivar.To assess the model’s broader applicability,this study analyzed fiber quality data from 40 upland cotton cultivars,including TM1.The measured fiber quality from all cultivars was then compared with the modelsimulated fiber quality.Results Among the 40 upland cultivars,fiber strength varied from 28.4 cN·tex^(-1) to 34.6 cN·tex^(-1),fiber length ranged from 27.1 mm to 33.3 mm,micronaire value ranged from 2.7 to 4.6,and length uniformity index varied from 82.3%to 85.5%.The model simulated fiber quality closely matched the measured values for TM1,with the absolute percentage error(APE)being less than 0.92%for fiber strength,fiber length,and length uniformity index and 4.7%for micronaire.However,significant differences were observed for the other cultivars.The Pearson correlation coefficient(r)between the measured and simulated values was negative for all fiber quality traits,and Wilmotts’s index of agreement(WIA)was below 0.45,indicating a strong model bias toward TM1 without incorporating cultivar-specific parameters.After incorporating cultivar-specific parameters,the model’s performance improved significantly,with an average r-value of 0.84 and WIA of 0.88.Conclusions The adopted methodology and estimated cultivar-specific parameters improved the model’s simulation accuracy.This approach can be applied to newer cotton cultivars,enhancing the GOSSYM model’s utility and its applicability for agricultural management and policy decisions.
基金Project(2021YFC2900200)supported by the National Key Research and Development Project of ChinaProject(20230203114SF)supported by the Key Research and Development Project of Jilin Province,China。
文摘Basalt fibers/7075 aluminum matrix composites were studied to meet the demand of aluminum alloy drill pipes for material wear resistance.The composites with different basalt fiber additions were prepared by hot pressed sintering and hot extrusion.The mechanical properties as well as friction and wear properties of the composites were studied by microstructure analysis,tensile experiments,friction and wear experiments.The results showed that basalt fibers were oriented and uniformly distributed and led to local grain refinement in the alloy matrix.The hardness and elongation of the composites were improved.The friction coefficient of the composites increased and then decreased,and the maximum wear depth and wear amount decreased,then increased,then decreased again with the growth of basalt fiber addition.Meanwhile,the inclusion of basalt fibers mitigated the uneven wear of the extruded 7075 aluminum alloy.The value of wear depth difference of 7075-0.2BF was the smallest,and that of 7075-2.0BF was close to it.The maximum wear depth and wear volume the 7075-0.2BF and 7075-2.0BF were also the smallest.The inhibition of uneven wear by basalt fibers enhanced of wear resistance for 7075 aluminum alloy,which has reference significance for improving the performance of aluminum alloy drill pipes.
文摘In this paper,a conventional soliton(CS)mode-locked erbium-doped fiber(EDF)laser was de-veloped using MAX phase material(MAX-PM)Nb_(4)AlC_(3)as a saturable absorber(SA).First,the liquid phase exfoliation(LPE)method was utilized to prepare Nb_(4)AlC_(3)nanosheets,and then a piece of tapered fiber was adopted to fabricate Nb_(4)AlC_(3)-SA.It was found that the saturation intensity and modulation depth of the Nb_(4)AlC_(3)-SA are 2.02 MW/cm^(2)and 1.88%.Based on the Nb_(4)AlC_(3)-SA,a conventional soliton(CS)mode-locked EDF laser was achieved.The central wavelength,pulse duration,and pulse repetition rate were found to be 1565.65 nm,615.37 fs,and 24.63 MHz,respectively.The performance is competitive and particularly superior in terms of pulse duration.This study fully confirms that Nb_(4)AlC_(3)possesses marvellous nonlinear saturable absorption properties and opens new possibilities for further research on air-stable ultrafast photon-ic devices.
基金Fundamental Research Funds for the Central Universities(YWF-23-L-1225)National Natural Science Foundation of China(62201025)Chinese Aeronautical Establishment(2022Z037051001)。
文摘Vibration-induced bias deviation,which is generated by intensity fluctuations and additional phase differences,is one of the vital errors for fiber optic gyroscopes(FOGs)operating in vibration environment and has severely restricted the applications of high-precision FOGs.The conventional methods for suppressing vibration-induced errors mostly concentrate on reinforcing the mechanical structure and optical path as well as the compensation under some specific operation parameters,which have very limited effects for high-precision FOGs maintaining performances under vibration.In this work,a technique of suppressing the vibration-induced bias deviation through removing the part related to the varying gain from the rotation-rate output is put forward.Particularly,the loop gain is extracted out by adding a gain-monitoring wave.By demodulating the loop gain and the rotation rate simultaneously under distinct frequencies and investigating their quantitative relationship,the vibrationinduced bias error is compensated without limiting the operating parameters or environments,like the applied modulation depth.The experimental results show that the proposed method has achieved the reduction of bias error from about 0.149°/h to0.014°/h during the random vibration with frequencies from20 Hz to 2000 Hz.This technique provides a feasible route for enhancing the performances of high-precision FOGs heading towards high environmental adaptability.
基金Projects(52274143,51874284)supported by the National Natural Science Foundation of China。
文摘The cemented-gangue-fly-ash backfill(CGFB)prepared from coal-based solid waste materials commonly exhibits high brittleness,leading to an increased susceptibility to cracking.Uniaxial compressive strength(UCS),acoustic emission(AE),and scanning electron microscopy tests were conducted on CGFB samples with recycled steel fiber(RSF)contents of 0,0.5%,1.0%and 1.5%to assess the mechanical properties and damage evolution law of the CGFB.The research findings indicate that:1)When RSF contents were 0.5%,1%,and 1.5%,respectively,compared to samples without RSF,the UCS decreased by 3.86%,6.76%,and 15.59%,while toughness increased by 69%,98%,and 123%;2)The addition of RSFs reduced the post-peak stress energy activity and increased the fluctuations in the b-value;3)As the RSF dosage increased from 0 to 1.5%,the per unit dissipated strain energy increased from 5.84 to 21.51,and the post-peak released energy increased from 15.07 to 33.76,indicating that the external energy required for the CGFB sample to fail increased;4)The hydration products,such as C-S-H gel,ettringite,and micro-particle materials,were embedded in the damaged areas of the RSFs,increasing the frictional force at the interface between the RSF and CGFB matrix.The shape variability of the RSFs caused interlocking between the RSFs and the matrix.Both mechanisms strengthened the bridging effect of the RSFs in the CGFB,thereby improving the damage resistance capability of CGFB.The excellent damage resistance occurred at an RSF content of 0.5%;thus,this content is recommended for engineering applications.
基金funded by Thailand Research Fund under Research and Researchers for Industries (contract no. MSD62I0063)
文摘This research addresses the growing demand for high-performance protective materials against high-velocity projectile impacts.The performance of multi-layered steel fiber-reinforced mortar(SFRM)panels with varying thicknesses and air gaps,was experimentally investigated under single and repeated impacts of 7.62×51 mm bullets fired from a distance of 50 m.The impact events were recorded using a high-speed camera at 40000 fps.Panel performance was assessed in terms of failure modes,kinetic energy absorption,spalling diameter,and percentage of back-face damage area,and weight loss.Results showed that panel configuration significantly influenced performance.Panel P10,with 70 mm SFRM thickness and 20 mm air gaps,provided the highest resistance,dissipating 5223 J of kinetic energy and preventing back-face damage.In contrast,P7,which absorbed 4476 J,presented a back damage area percentage of 8.93%after three impacts.Weight loss analysis further confirmed durability improvements,with P10 showing only 1.53%cumulative loss compared to 3.26%in P7.The inclusion of wider air gaps enhanced energy dissipation and reduced damage.Comparison between single and repeated impacts demonstrated the sustained resistance of high-performance panels,with P10 maintaining minimal degradation across three consecutive impacts.These findings highlight the potential of multi-layer SFRM panels to enhance ballistic resistance,making them suitable for military,security,and civilian protective applications requiring long-term durability.
文摘This study was designed to enhance the soft clayey soil treatment effects using an innovative mechanochemically activated geopolymer(GP)through the optimized inclusion of nano-metakaolin(NM)and polypropylene fiber.The study also investigated the possible improvements in the binding ability of GP stabilization under different curing regimes.To this end,binders including lime alone,LG(slag-based geopolymer),LGNM(nano-modified LG with NM)and LGNMF(LGNM/fiber)mixture were separately added to soft soil samples.The fabricated composites were then subjected to a set of macro and micro level tests.The results indicated that,adding LG binary with a 20%NM replacement can lead to a significant increase(by nearly 21 times)in soil strength and a remarkable decline(about 70%)in the compression index.In fact,NM can play a great role in accelerating the rate of hydration reactions and forming a densely packed fabric,which staggeringly improve the soil hydromechanical attributes.It was also observed that raising the curing temperature will effectively augment the polymerization kinetics,leading to a substantial increase(~2 times)in the soil solidification process.However,the stabilized composites containing NM may reveal a brittle nature under more intense stress.Such a potential drawback seems to be resolved by the integration of fibers within the matrix.LGNM combined with fiber would boost(≥10 times)the energy absorption capacity of the soil,notably enhancing its residual strength.Overall,LGNMF may not only feature a broader range of benefits(inc.economic,technical,environmental)compared to traditional binders but also promote the ductility of the GP materials.
文摘Many researchers have focused on the behavior of fiber-reinforced concrete(FRC)in the construction of various defensive structures to resist against impact forces resulting from explosions and projectiles.However,the lack of sufficient research regarding the resistance of functionally graded fiber-reinforced concrete against projectile impacts has resulted in a limited understanding of the performance of this concrete type,which is necessary for the design and construction of structures requiring great resistance against external threats.Here,the performance of functionally graded fiber-reinforced concrete against projectile impacts was investigated experimentally using a(two-stage light)gas gun and a drop weight testing machine.For this objective,12 mix designs,with which 35 cylindrical specimens and 30 slab specimens were made,were prepared,and the main variables were the magnetite aggregate vol%(55%)replacing natural coarse aggregate,steel fiber vol%,and steel fiber type(3D and 5D).The fibers were added at six vol%of 0%,0.5%,0.75%,1%,1.25%,and 1.5%in 10 specimen series(three identical specimens per each series)with dimensions of 40×40×7.5 cm and functional grading(three layers),and the manufactured specimens were subjected to the drop weight impact and projectile penetration tests by the drop weight testing machine and gas gun,respectively,to assess their performance.Parameters under study included the compressive strength,destruction level,and penetration depth.The experimental results demonstrate that using the magnetite aggregate instead of the natural coarse aggregate elevated the compressive strength of the concrete by 61%.In the tests by the drop weight machine,it was observed that by increasing the total vol%of the fibers,especially by increasing the fiber content in the outer layers(impact surface),the cracking resistance and energy absorption increased by around 100%.Note that the fiber geometry had little effect on the energy absorption in the drop weight test.Investigating the optimum specimens showed that using 3D steel fibers at a total fiber content of 1 vol%,consisting of a layered grading of 1.5 vol%,0 vol%,and 1.5 vol%,improved the penetration depth by 76%and lowered the destruction level by 85%.In addition,incorporating the 5D steel fibers at a total fiber content of 1 vol%,consisting of the layered fiber contents of 1.5%,0%,and 1.5%,improved the projectile penetration depth by 50%and lowered the damage level by 61%compared with the case of using the 3D fibers.
基金supported by the National Natural Science Foundation of China(62375013).
文摘As the core component of inertial navigation systems, fiber optic gyroscope (FOG), with technical advantages such as low power consumption, long lifespan, fast startup speed, and flexible structural design, are widely used in aerospace, unmanned driving, and other fields. However, due to the temper-ature sensitivity of optical devices, the influence of environmen-tal temperature causes errors in FOG, thereby greatly limiting their output accuracy. This work researches on machine-learn-ing based temperature error compensation techniques for FOG. Specifically, it focuses on compensating for the bias errors gen-erated in the fiber ring due to the Shupe effect. This work pro-poses a composite model based on k-means clustering, sup-port vector regression, and particle swarm optimization algo-rithms. And it significantly reduced redundancy within the sam-ples by adopting the interval sequence sample. Moreover, met-rics such as root mean square error (RMSE), mean absolute error (MAE), bias stability, and Allan variance, are selected to evaluate the model’s performance and compensation effective-ness. This work effectively enhances the consistency between data and models across different temperature ranges and tem-perature gradients, improving the bias stability of the FOG from 0.022 °/h to 0.006 °/h. Compared to the existing methods utiliz-ing a single machine learning model, the proposed method increases the bias stability of the compensated FOG from 57.11% to 71.98%, and enhances the suppression of rate ramp noise coefficient from 2.29% to 14.83%. This work improves the accuracy of FOG after compensation, providing theoretical guid-ance and technical references for sensors error compensation work in other fields.