Currently,the solid adsorbents with porous structure have been widely applied in CO_(2)capture.However,the unmodified MgO-ZrO_(2)adsorbents appeared to be low adsorption capacity of CO_(2).The solid adsorbent material...Currently,the solid adsorbents with porous structure have been widely applied in CO_(2)capture.However,the unmodified MgO-ZrO_(2)adsorbents appeared to be low adsorption capacity of CO_(2).The solid adsorbent materials were successfully synthesized by loading TEPA onto the pore MgO/ZrO_(2)carriers in the paper.The pore structure and surface characteristic of the samples were analyzed by using XRD,BET,FT-IR and SEM.The adsorbent materials exhibited microcrystalline state,and the crystallinity of all samples gradually decreased as the increase of TEPA content.The pore structure analysis indicated that the modification of MgO-ZrO_(2)adsorbents with TEPA led to the decrease of the specific surface areas,but the narrow micro-mesopore size distributions ranging from 1.8-12 nm in the adsorbents still were maintained.FT-IR spectrum results further verified the successful loading of TEPA.The adsorption capacity of the adsorbents for CO_(2)were tested by using an adsorption apparatus equipped with gas chromatography.The results indicated that when the TEPA loading reached 50%,the sample exhibited the maximum adsorption value for CO_(2),reaching 4.07 mmol/g under the operation condition of 75℃and atmospheric pressure.This result could be assigned to not only the base active sites but also the coexistence of both micropore and mesopore in the adsorbent.After three cycles tests for CO_(2)capture,the adsorption value of the sample for CO_(2)can also reached 95%of its original adsorption capacity,which verified the excellent cyclic operation stability.展开更多
This work presents a synthesis of bimetallic NiMo and NiW modified ZSM-5/MCM-41 composites and their heterogeneous catalytic conversion of crude palm oil( CPO) to biofuels. The ZSM-5/MCM-41 composites were synthesized...This work presents a synthesis of bimetallic NiMo and NiW modified ZSM-5/MCM-41 composites and their heterogeneous catalytic conversion of crude palm oil( CPO) to biofuels. The ZSM-5/MCM-41 composites were synthesized through a self-assembly of cetyltrimethylammonium bromide( CTAB) surfactant with silica-alumina from ZSM-5 zeolite,prepared from natural kaolin by the hydrothermal technique. Subsequently,the synthesized composites were deposited with bimetallic NiMo and NiW by impregnation method. The obtained catalysts presented a micro-mesoporous structure,confirmed by XRD,SEM,TEM,EDX,NH_3-TPD,XRF and N_2 adsorption-desorption measurements. The results of CPO conversion demonstrate that the catalytic activity of the synthesized catalysts decreases in the series of NiMo-ZSM-5/MCM-41 > NiW-ZSM-5/MCM-41 > Ni-ZSM-5/MCM-41 > Mo-ZSM-5/MCM-41 > W-ZSM-5/MCM-41 > NiMo-ZSM-5 > NiW-ZSM-5 > ZSM-5/MCM-41 > ZSM-5 > MCM-41. It was found that the bimetallic NiMo-and NiW-ZSM-5/MCM-41 catalysts give higher yields of liquid hydrocarbons than other catalysts at a given conversion. Types of hydrocarbon in liquid products,identified by simulated distillation gas chromatography-flame ionization detector( SimDis GC-FID),are gasoline( 150-200 ℃; C5-12),kerosene( 250-300 ℃; C5-20) and diesel( 350 ℃; C7-20).Moreover,the conversion of CPO to biofuel products using the NiMo-and NiW-ZSM-5/MCM-41 catalysts offers no statistically significant difference( P> 0.05) at 95% confidence level,evaluated by SPSS analysis.展开更多
基金supported by Shanxi Provincial Key Research and Development Project(202102090301026)Graduate Education Innovation Project of Taiyuan University of Science and Technology(SY2023024)。
文摘Currently,the solid adsorbents with porous structure have been widely applied in CO_(2)capture.However,the unmodified MgO-ZrO_(2)adsorbents appeared to be low adsorption capacity of CO_(2).The solid adsorbent materials were successfully synthesized by loading TEPA onto the pore MgO/ZrO_(2)carriers in the paper.The pore structure and surface characteristic of the samples were analyzed by using XRD,BET,FT-IR and SEM.The adsorbent materials exhibited microcrystalline state,and the crystallinity of all samples gradually decreased as the increase of TEPA content.The pore structure analysis indicated that the modification of MgO-ZrO_(2)adsorbents with TEPA led to the decrease of the specific surface areas,but the narrow micro-mesopore size distributions ranging from 1.8-12 nm in the adsorbents still were maintained.FT-IR spectrum results further verified the successful loading of TEPA.The adsorption capacity of the adsorbents for CO_(2)were tested by using an adsorption apparatus equipped with gas chromatography.The results indicated that when the TEPA loading reached 50%,the sample exhibited the maximum adsorption value for CO_(2),reaching 4.07 mmol/g under the operation condition of 75℃and atmospheric pressure.This result could be assigned to not only the base active sites but also the coexistence of both micropore and mesopore in the adsorbent.After three cycles tests for CO_(2)capture,the adsorption value of the sample for CO_(2)can also reached 95%of its original adsorption capacity,which verified the excellent cyclic operation stability.
基金The financial supported by Nakhon Ratchasima Rajabhat University,Nakhon Ratchasimathe National Research Council of Thailand+3 种基金Center of Excellence for Innovation in Chemistry (PERCH-CIC)Office of the Higher Education CommissionMinistry of Education and Materials Chemistry Research CenterDepartment of Chemistry Faculty of Science,Khon Kaen University,Thailand
文摘This work presents a synthesis of bimetallic NiMo and NiW modified ZSM-5/MCM-41 composites and their heterogeneous catalytic conversion of crude palm oil( CPO) to biofuels. The ZSM-5/MCM-41 composites were synthesized through a self-assembly of cetyltrimethylammonium bromide( CTAB) surfactant with silica-alumina from ZSM-5 zeolite,prepared from natural kaolin by the hydrothermal technique. Subsequently,the synthesized composites were deposited with bimetallic NiMo and NiW by impregnation method. The obtained catalysts presented a micro-mesoporous structure,confirmed by XRD,SEM,TEM,EDX,NH_3-TPD,XRF and N_2 adsorption-desorption measurements. The results of CPO conversion demonstrate that the catalytic activity of the synthesized catalysts decreases in the series of NiMo-ZSM-5/MCM-41 > NiW-ZSM-5/MCM-41 > Ni-ZSM-5/MCM-41 > Mo-ZSM-5/MCM-41 > W-ZSM-5/MCM-41 > NiMo-ZSM-5 > NiW-ZSM-5 > ZSM-5/MCM-41 > ZSM-5 > MCM-41. It was found that the bimetallic NiMo-and NiW-ZSM-5/MCM-41 catalysts give higher yields of liquid hydrocarbons than other catalysts at a given conversion. Types of hydrocarbon in liquid products,identified by simulated distillation gas chromatography-flame ionization detector( SimDis GC-FID),are gasoline( 150-200 ℃; C5-12),kerosene( 250-300 ℃; C5-20) and diesel( 350 ℃; C7-20).Moreover,the conversion of CPO to biofuel products using the NiMo-and NiW-ZSM-5/MCM-41 catalysts offers no statistically significant difference( P> 0.05) at 95% confidence level,evaluated by SPSS analysis.