The flexible transmission shaft and wheel propeller are combined as the kinetic source equipment, which realizes the nmlti-motion modes of the autonomous underwater vehicle (AUV) such as vectored thruster and wheele...The flexible transmission shaft and wheel propeller are combined as the kinetic source equipment, which realizes the nmlti-motion modes of the autonomous underwater vehicle (AUV) such as vectored thruster and wheeled movement. In order to study the interactional principle between the hull and the wheel propellers while the AUV navigating in water, the computational fluid dynamics (CFD) method is used to simulate numerically the unsteady viscous flow around AUV with propellers by using the Reynolds-averaged Navier-Stokes (RANS) equations, shear-stress transport (SST) k-w model and pressure with splitting of operators (PISO) algorithm based on sliding mesh. The hydrodynamic parameters of AUV with propellers such as resistance, pressure and velocity are got, which reflect well the real ambient flow field of AUV with propellers. Then, the semi-implicit method for pressure-linked equations (SIMPLE) algorithm is used to compute the steady viscous flow field of AUV hull and propellers, respectively. The computational results agree well with the experimental data, which shows that the numerical method has good accuracy in the prediction of hydrodynamic performance. The interaction between AUV hull and wheel propellers is predicted qualitatively and quantitatively by comparing the hydrodynamic parameters such as resistance, pressure and velocity with those from integral computation and partial computation of the viscous flow around AUV with propellers, which provides an effective reference to the shady on noise and vibration of AUV hull and propellers in real environment. It also provides technical support for the design of new AUVs.展开更多
为了研究空间曲线啮合轮机构的制造工艺,首次采用光固化快速成型(Stereo L ithograph Apparatus,SLA)技术制造出主动轮和从动轮样品。实验结果表明,采用SLA技术获得的空间曲线啮合轮的主动轮和从动轮具有高的形状精度和尺寸精度,能够实...为了研究空间曲线啮合轮机构的制造工艺,首次采用光固化快速成型(Stereo L ithograph Apparatus,SLA)技术制造出主动轮和从动轮样品。实验结果表明,采用SLA技术获得的空间曲线啮合轮的主动轮和从动轮具有高的形状精度和尺寸精度,能够实现连续稳定的啮合传动。展开更多
基金Project(2006AA09Z235) supported by National High Technology Research and Development Program of ChinaProject(CX2009B003) supported by Hunan Provincial Innovation Foundation For Postgraduate,China
文摘The flexible transmission shaft and wheel propeller are combined as the kinetic source equipment, which realizes the nmlti-motion modes of the autonomous underwater vehicle (AUV) such as vectored thruster and wheeled movement. In order to study the interactional principle between the hull and the wheel propellers while the AUV navigating in water, the computational fluid dynamics (CFD) method is used to simulate numerically the unsteady viscous flow around AUV with propellers by using the Reynolds-averaged Navier-Stokes (RANS) equations, shear-stress transport (SST) k-w model and pressure with splitting of operators (PISO) algorithm based on sliding mesh. The hydrodynamic parameters of AUV with propellers such as resistance, pressure and velocity are got, which reflect well the real ambient flow field of AUV with propellers. Then, the semi-implicit method for pressure-linked equations (SIMPLE) algorithm is used to compute the steady viscous flow field of AUV hull and propellers, respectively. The computational results agree well with the experimental data, which shows that the numerical method has good accuracy in the prediction of hydrodynamic performance. The interaction between AUV hull and wheel propellers is predicted qualitatively and quantitatively by comparing the hydrodynamic parameters such as resistance, pressure and velocity with those from integral computation and partial computation of the viscous flow around AUV with propellers, which provides an effective reference to the shady on noise and vibration of AUV hull and propellers in real environment. It also provides technical support for the design of new AUVs.