Hairong Wang, Yaoqiang Chen, Qiulin Zhang, Qingchao Zhu, Maochu Gong, Ming Zhao( Key Laboratory of Green Chemistry & Technology of Ministry Education, College of Chemistry, Sichuan University, Chengdu 610064, Sichua...Hairong Wang, Yaoqiang Chen, Qiulin Zhang, Qingchao Zhu, Maochu Gong, Ming Zhao( Key Laboratory of Green Chemistry & Technology of Ministry Education, College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China展开更多
Pd/Ce0.8Zro.202 catalysts modified by cobalt were prepared by a sequential impregnation method and characterized by X-ray powder diffraction (XRD), N2 adsorption/desorption (Brunauer-Emmet-Teller), oxygen storage ...Pd/Ce0.8Zro.202 catalysts modified by cobalt were prepared by a sequential impregnation method and characterized by X-ray powder diffraction (XRD), N2 adsorption/desorption (Brunauer-Emmet-Teller), oxygen storage capacity (OSC), CO-chemisorption, H2-temperature-programmed reduction (H2-TPR) and X-ray photoelectron spectroscopy (XPS). The effect of Co on the performance of methanol decomposition was eval- uated at a fixed-bed microreactor. The results showed that the addition of Co can improve the oxygen storage capacity of the catalyst and the dispersion of Pd. XPS results indicated that Pd was in a partly oxidized (Pd6+, 1〈8〈2) state and Co2+ was present in Pd catalysts modified by Co. A 90% conversion of methanol was achieved at around 280 ℃ over Pd-Co/Ceo.8Zro.202 catalyst which was 20 ℃ lower than that over Pd/Ceo.sZro.202, indicating that both pd6+and Co2+ play an important role in improving the catalytic activity of methanol decomposition.展开更多
基金the National Natural Science Foundation of China (20773090)the Specialized Research Fund for the Doctoral Program of Higher Education of China (20070610026, 200806100009)
文摘Hairong Wang, Yaoqiang Chen, Qiulin Zhang, Qingchao Zhu, Maochu Gong, Ming Zhao( Key Laboratory of Green Chemistry & Technology of Ministry Education, College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China
基金supported by the National Natural Science Foundation of China(No.21173153)Sichuan Province Science and Technology Support Projects(2012FZ0008)
文摘Pd/Ce0.8Zro.202 catalysts modified by cobalt were prepared by a sequential impregnation method and characterized by X-ray powder diffraction (XRD), N2 adsorption/desorption (Brunauer-Emmet-Teller), oxygen storage capacity (OSC), CO-chemisorption, H2-temperature-programmed reduction (H2-TPR) and X-ray photoelectron spectroscopy (XPS). The effect of Co on the performance of methanol decomposition was eval- uated at a fixed-bed microreactor. The results showed that the addition of Co can improve the oxygen storage capacity of the catalyst and the dispersion of Pd. XPS results indicated that Pd was in a partly oxidized (Pd6+, 1〈8〈2) state and Co2+ was present in Pd catalysts modified by Co. A 90% conversion of methanol was achieved at around 280 ℃ over Pd-Co/Ceo.8Zro.202 catalyst which was 20 ℃ lower than that over Pd/Ceo.sZro.202, indicating that both pd6+and Co2+ play an important role in improving the catalytic activity of methanol decomposition.