期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Modeling and finite element analysis of transduction process of electromagnetic acoustic transducers for nonferromagnetic metal material testing 被引量:14
1
作者 郝宽胜 黄松岭 +2 位作者 赵伟 段汝娇 王珅 《Journal of Central South University》 SCIE EI CAS 2011年第3期749-754,共6页
Facing the problems lack of considering the non-uniform distribution of the static bias magnetic field and computing the panicle displacements in the simulation model of electromagnetic acoustic transducer (EMAT), a... Facing the problems lack of considering the non-uniform distribution of the static bias magnetic field and computing the panicle displacements in the simulation model of electromagnetic acoustic transducer (EMAT), a multi-field coupled model was established and the finite element method (FEM) was presented to calculate the entire transduction process. The multi-field coupled model included the static magnetic field, pulsed eddy current field and mechanical field. The FEM equations of the three fields were derived by Garlerkin FEM method. Thus, the entire transduction process of the EMAT was calculated through sequentially coupling the three fields. The transduction process of a Lamb wave EMAT was calculated according to the present model and method. The results show that, by the present method, it is valid to calculate the particle displacement under the given excitation signal and non-uniformly distributed static magnetic field. Calculation error will be brought about if the non-uniform distribution of the static bias magnetic field is neglected. 展开更多
关键词 metal material nondestructive testing electromagnetic acoustic transducer multi-field coupling Garlerkin method finite element
在线阅读 下载PDF
Numerical and experimental evaluation for density-related thermal insulation capability of entangled porous metallic wire material 被引量:2
2
作者 Tao Zhou Rong-zheng Fang +3 位作者 Di Jia Pei Yang Zhi-ying Ren Hong-bai Bai 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第5期177-188,共12页
Entangled porous metallic wire material(EPMWM)has the potential as a thermal insulation material in defence and engineering.In order to optimize its thermophysical properties at the design stage,it is of great signifi... Entangled porous metallic wire material(EPMWM)has the potential as a thermal insulation material in defence and engineering.In order to optimize its thermophysical properties at the design stage,it is of great significance to reveal the thermal response mechanism of EPMWM based on its complex structural effects.In the present work,virtual manufacturing technology(VMT)was developed to restore the physics-based 3D model of EPMWM.On this basis,the transient thermal analysis is carried out to explore the contact-relevant thermal behavior of EPMWM,and then the spiral unit containing unique structural information are further extracted and counted.In particular,the thermal resistance network is numerically constructed based on the spiral unit through the thermoelectric analogy method to accurately predict the effective thermal conductivity(ETC)of EPMWM.Finally,the thermal diffusivity and specific heat of the samples were obtained by the laser thermal analyzer to calculate the ETC and thermal insulation factor of interest.The results show that the ETC of EPMWM increases with increasing temperature or reducing density under the experimental conditions.The numerical prediction is consistent with the experimental result and the average error is less than 4%. 展开更多
关键词 Entangled porous metallic wire material (EPMWM) Virtual manufacturing technology(VMT) Thermal resistance network Effective thermal conductivity(ETC) Thermal insulation factor
在线阅读 下载PDF
Comments on "Equivalent Currents on an Anisotropic Material Backed by a Metal Surface and Their Relation 被引量:1
3
《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2001年第3期97-97,共1页
关键词 Equivalent Currents on an Anisotropic material Backed by a metal Surface and Their Relation
在线阅读 下载PDF
Mechanical behavior of entangled metallic wire materials-polyurethane interpenetrating composites
4
作者 Xiao-yuan Zheng Zhi-ying Ren +2 位作者 Hong-bai Bai Zhang-bin Wu You-song Guo 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第2期120-136,共17页
Composite materials exhibit the impressive mechanical properties of high damping and stiffness,which cannot be attained by employing conventional single materials.Along these lines,a novel material architecture is pre... Composite materials exhibit the impressive mechanical properties of high damping and stiffness,which cannot be attained by employing conventional single materials.Along these lines,a novel material architecture is presented in this work in order to fabricate composites with enhanced mechanical characteristics.More specifically,entangled metallic wire materials were used as the active matrix,whereas polyurethane was employed as the reinforcement elements.As a result,an entangled metallic wire material-polyurethane composite with high damping and stiffness was prepared by enforcing the vacuum infiltration method.On top of that,the mechanical properties(loss factor,energy consumption,and average stiffness)of the proposed composite materials were characterized by performing dynamic tests,and its fatigue characteristics were verified by the micro-interface bonding,as well as the macro-damage factor.The impact of the density,preloading spacing,loading amplitude,and exciting frequency on the mechanical properties of the composites were also thoroughly analyzed.The extracted results indicate that the mechanical properties of the composites were significantly enhanced than those of the pure materials due to the introduction of interface friction.Moreover,the average stiffness of the composites was about 10 times the respective value of the entangled metallic wire material.Interestingly,a rise in the loading period leads to some failure between the composite interfaces,which reduces the stiffness property but enhances the damping dissipation properties.Finally,a comprehensive dynamic mechanical model of the composites was established,while it was experimentally verified.The proposed composites possess higher damping features,i.e.,stiffness characteristics,and maintain better fatigue characteristics,which can broaden the application range of the composites.In addition,we provide a theoretical and experimental framework for the research and applications in the field of metal matrix composites. 展开更多
关键词 Entangled metallic wire material Composites materials Damping property STIFFNESS Fatigue characteristics
在线阅读 下载PDF
Capillary Property of Entangled Porous Metallic Wire materials and Its Application in Fluid Buffers:Theoretical Analysis and Experimental Study
5
作者 Yu Tang Yiwan Wu +1 位作者 Hu Cheng Rong Liu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期400-416,共17页
Strong impact does serious harm to the military industries so it is necessary to choose reasonable cushioning material and design effective buffers to prevent the impact of equipment.Based on the capillary property en... Strong impact does serious harm to the military industries so it is necessary to choose reasonable cushioning material and design effective buffers to prevent the impact of equipment.Based on the capillary property entangled porous metallic wire materials(EPMWM),this paper designed a composite buffer which uses EPMWM and viscous fluid as cushioning materials under the low-speed impact of the recoil force device of weapon equipment(such as artillery,mortar,etc.).Combined with the capillary model,porosity,hydraulic diameter,maximum pore diameter and pore distribution were used to characterize the pore structure characteristics of EPMWM.The calculation model of the damping force of the composite buffer was established.The low-speed impact test of the composite buffer was conducted.The parameters of the buffer under low-speed impact were identified according to the model,and the nonlinear model of damping force was obtained.The test results show that the composite buffer with EPMWM and viscous fluid can absorb the impact energy from the recoil movement effectively,and provide a new method for the buffer design of weapon equipment(such as artillery,mortar,etc.). 展开更多
关键词 Entangled porous metallic wire materials Capillary property Viscousfluid Low-speed impact Damping force
在线阅读 下载PDF
Quasi-static and low-velocity impact mechanical behaviors of entangled porous metallic wire material under different temperatures
6
作者 Yi-wan Wu Hu Cheng +3 位作者 Shang-zhou Li Yu Tang Hong-bai Bai Chun-hong Lu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第1期143-152,共10页
To improve the defense capability of military equipment under extreme conditions,impact-resistant and high-energy-consuming materials have to be developed.The damping characteristic of entangled porous metallic wire m... To improve the defense capability of military equipment under extreme conditions,impact-resistant and high-energy-consuming materials have to be developed.The damping characteristic of entangled porous metallic wire materials(EPMWM)for vibration isolation was previously investigated.In this paper,a study focusing on the impact-resistance of EPMWM with the consideration of ambient temperature is presented.The quasi-static and low-velocity impact mechanical behavior of EPMWM under different temperatures(25℃-300℃)are systematically studied.The results of the static compression test show that the damping energy dissipation of EPMWM increases with temperature while the nonlinear damping characteristics are gradually enhanced.During the impact experiments,the impact energy loss rate of EPMWM was between 65%and 85%,while the temperatures increased from 25℃to 300℃.Moreover,under the same drop impact conditions,the overall deformation of EPMWM decreases in the temperature range of 100℃-200℃.On the other hand,the impact stiffness,energy dissipation,and impact loss factor of EPMWM significantly increase with temperature.This can be attributed to an increase in temperature,which changes the thermal expansion coefficient and contact state of the internal wire helixes.Consequently,the energy dissipation mode(dry friction,air damping,and plastic deformation)of EPMWM is also altered.Therefore,the EPMWM may act as a potential candidate material for superior energy absorption applications. 展开更多
关键词 Entangled porous metallic wire material Low-velocity impact High temperature Energy dissipation characteristics Mechanical behavior
在线阅读 下载PDF
Study on Aging Precipitation Characteristic of High Strength Al-Zn-Mg-Cu Alloy 被引量:1
7
作者 蹇海根 姜锋 +3 位作者 黄宏锋 韦莉莉 蒋龙 郑秀媛 《Defence Technology(防务技术)》 SCIE EI CAS 2010年第2期104-108,共5页
The precipitation of MgZn2 phase in aging process of Al-Zn-Mg-Cu alloy forging was characterized qualitatively after transmission electron microscope(TEM)observation,X-ray diffraction phase analysis and the exact meas... The precipitation of MgZn2 phase in aging process of Al-Zn-Mg-Cu alloy forging was characterized qualitatively after transmission electron microscope(TEM)observation,X-ray diffraction phase analysis and the exact measure of lattice parameter.And,the precipitation of the second-phase in aging process was simulated after test the resistivity of the alloy in a continuous heating process and delayed time processing.The results show that when heating in the same rate,the alloy resistivity increases with temperature first,a mutation point appears at 110℃,and the resistivity reaches its peak at 120℃.Then,the resistivity decreases and achieves a minimum at about 170℃.Afterwards,it increases again.The change of resistivity results from a combined effect of the temperature and phase transformation.The volume precipitation of η' phase dominates at about 120℃,and the resistivity of forgings decreases accordingly.When the specimen cools in a furnace at 240℃,the phase transformation finishes basically and the alloy content of Al-matix keeps stable,thus,the alloy resistivity depends on the temperature only.It decreases with temperature and time since the end of precipitation.The higher the temperature is,the bigger it will be.With a big descending rate of the resistivity curve,the time to reach the stable value becomes shorter. 展开更多
关键词 metallic material continuous-heating X-ray diffraction lattice parameter RESISTIVITY
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部