In0.3Ga0.7N metal-insulator-semiconductor (MIS) and metal-semiconductor (MS) surface barrier photodetectors have been fabricated. The In0.3Ga0.7N epilayers were grown on sapphire by metalorganic chemical vapour de...In0.3Ga0.7N metal-insulator-semiconductor (MIS) and metal-semiconductor (MS) surface barrier photodetectors have been fabricated. The In0.3Ga0.7N epilayers were grown on sapphire by metalorganic chemical vapour deposition (MOCVD). The photoresponse and reverse current-voltage characteristics of the In0.3Ga0.7N MIS and MS photodetectors were measured. A best zero bias responsivity of 0.18 A/W at 450 nm is obtained for the In0.3Ga0.7N MIS photodetector with 10 nm Si3N4 insulator layer, which is more than ten times higher than the In0.3Ga0.7N MS photodetector. The reason is attributed to the decrease of the interface states and increase of surface barrier height by the inserted insulator. The influence of the thickness of the Si3N4 insulator layer on the photoresponsivity of the MIS photodetector is also discussed.展开更多
Fabrication and characterization of metal-semiconductor-metal ultraviolet (MSM UV) photodetector based on ZnO ultra thin (nano scale) films with Pd Schottky contact are reported. The ZnO thin film was grown on gla...Fabrication and characterization of metal-semiconductor-metal ultraviolet (MSM UV) photodetector based on ZnO ultra thin (nano scale) films with Pd Schottky contact are reported. The ZnO thin film was grown on glass substrate by thermal oxidation of preeposited zinc films using vacuum deposition technique. With applied voltage in the range from -3V to 3V, the contrast ratio, responsivity, and detectivity for an incident radiation of 0.1 mW at 365 nm wavelength were estimated. The proposed device exhibited a high gain which was attributed to the hole trapping at semiconductor-metal interface. I-V characteristics were studied and the parameters, such as ideality factor, leakage current, resistance-areaproduct, and barrier height, were extracted from the measured data.展开更多
Tungsten oxide nanowires of diameters ranging from 7 to 200 nm are prepared on a tungsten rod substrate by using the chemical vapour deposition (CVD) method with vapour-solid (VS) mechanism.Tin powders are used to...Tungsten oxide nanowires of diameters ranging from 7 to 200 nm are prepared on a tungsten rod substrate by using the chemical vapour deposition (CVD) method with vapour-solid (VS) mechanism.Tin powders are used to control oxygen concentration in the furnace,thereby assisting the growth of the tungsten oxide nanowires.The grown tungsten oxide nanowires are determined to be of crystalline W18O49. I-V curves are measured by an in situ transmission electron microscope (TEM) to investigate the electrical properties of the nanowires.All of the I-V curves observed are symmetric,which reveals that the tungsten oxide nanowires are semiconducting. Quantitative analyses of the experimental I-V curves by using a metal semiconductor-metal (MSM) model give some intrinsic parameters of the tungsten oxide nanowires,such as the carrier concentration,the carrier mobility and the conductivity.展开更多
基金Project supported by the State Key Development Program for Basic Research of China (Grant No 2006CB6049), the National Natural Science Foundation of China (Grant No 60476030), and the Natural Science Foundation of Jiangsu Province of China (Grant No BK2006126).Acknowledgment The authors gratefully acknowledge Nanjing Institute of Electronic Devices for fabricating the insulator layers of the photodetectors.
文摘In0.3Ga0.7N metal-insulator-semiconductor (MIS) and metal-semiconductor (MS) surface barrier photodetectors have been fabricated. The In0.3Ga0.7N epilayers were grown on sapphire by metalorganic chemical vapour deposition (MOCVD). The photoresponse and reverse current-voltage characteristics of the In0.3Ga0.7N MIS and MS photodetectors were measured. A best zero bias responsivity of 0.18 A/W at 450 nm is obtained for the In0.3Ga0.7N MIS photodetector with 10 nm Si3N4 insulator layer, which is more than ten times higher than the In0.3Ga0.7N MS photodetector. The reason is attributed to the decrease of the interface states and increase of surface barrier height by the inserted insulator. The influence of the thickness of the Si3N4 insulator layer on the photoresponsivity of the MIS photodetector is also discussed.
基金support by Indo-Iraq Cultural Exchange Program of ICCR (Indian Council for Cultural Relations)
文摘Fabrication and characterization of metal-semiconductor-metal ultraviolet (MSM UV) photodetector based on ZnO ultra thin (nano scale) films with Pd Schottky contact are reported. The ZnO thin film was grown on glass substrate by thermal oxidation of preeposited zinc films using vacuum deposition technique. With applied voltage in the range from -3V to 3V, the contrast ratio, responsivity, and detectivity for an incident radiation of 0.1 mW at 365 nm wavelength were estimated. The proposed device exhibited a high gain which was attributed to the hole trapping at semiconductor-metal interface. I-V characteristics were studied and the parameters, such as ideality factor, leakage current, resistance-areaproduct, and barrier height, were extracted from the measured data.
基金Project supported by the National Natural Science Foundation of China (Grant No 50671053)
文摘Tungsten oxide nanowires of diameters ranging from 7 to 200 nm are prepared on a tungsten rod substrate by using the chemical vapour deposition (CVD) method with vapour-solid (VS) mechanism.Tin powders are used to control oxygen concentration in the furnace,thereby assisting the growth of the tungsten oxide nanowires.The grown tungsten oxide nanowires are determined to be of crystalline W18O49. I-V curves are measured by an in situ transmission electron microscope (TEM) to investigate the electrical properties of the nanowires.All of the I-V curves observed are symmetric,which reveals that the tungsten oxide nanowires are semiconducting. Quantitative analyses of the experimental I-V curves by using a metal semiconductor-metal (MSM) model give some intrinsic parameters of the tungsten oxide nanowires,such as the carrier concentration,the carrier mobility and the conductivity.