The WSC proteins produced by Penicillium expansum play a crucial role in causing blue mold on pears.To analyze the role of the WSC1 gene in the pathogenic process of this fungal pathogen,we conducted transcriptomic an...The WSC proteins produced by Penicillium expansum play a crucial role in causing blue mold on pears.To analyze the role of the WSC1 gene in the pathogenic process of this fungal pathogen,we conducted transcriptomic analysis of a WSC1 knockout(ΔWSC1)strain.The knockout of WSC1 significantly altered the gene expression profile in P.expansum,particularly for genes involved in cell wall integrity,signaling,stress response,and toxin production.The differential expression of these genes might make theΔWSC1 strain more vulnerable to environmental stress,while reducing the toxin production capacity,ultimately leading to a decrease in the pathogenicity.The transcriptomic analysis revealed that the expression of genes related to stress response signals,defense mechanisms and oxidative stress management changed when pear fruits were infected with theΔWSC1 strain.These changes may trigger a cascade of responses in pear fruits.In addition,compared with those infected with the wild-type strain,pear fruits infected with theΔWSC1 strain exhibited up-regulated expression of genes related to defense and oxidative stress.This study clarifies how the WSC1 gene influences P.expansum’s ability to infect pear fruits and how pear fruits respond to the infection.展开更多
In this paper,we develop a multi-scalar auxiliary variables(MSAV)scheme for the Cahn-Hilliard Magnetohydrodynamics system by introducing two scalar auxiliary variables(SAV).This scheme is linear,fully decoupled and un...In this paper,we develop a multi-scalar auxiliary variables(MSAV)scheme for the Cahn-Hilliard Magnetohydrodynamics system by introducing two scalar auxiliary variables(SAV).This scheme is linear,fully decoupled and unconditionally stable in energy.Subsequently,we provide a detailed implementation procedure for full decoupling.Thus,at each time step,only a series of linear differential equations with constant coefficients need to be solved.To validate the effectiveness of our approach,we conduct an error analysis for this first-order scheme.Finally,some numerical experiments are provided to verify the energy dissipation of the system and the convergence of the proposed approach.展开更多
Molten salt reactors(MSRs)are a promising candidate for Generation IV reactor technologies,and the small modular molten salt reactor(SM-MSR),which utilizes low-enriched uranium and thorium fuels,is regarded as a wise ...Molten salt reactors(MSRs)are a promising candidate for Generation IV reactor technologies,and the small modular molten salt reactor(SM-MSR),which utilizes low-enriched uranium and thorium fuels,is regarded as a wise development path to accelerate deployment time.Uncertainty and sensitivity analyses of accidents guide nuclear reactor design and safety analyses.Uncertainty analysis can ascertain the safety margin,and sensitivity analysis can reveal the correlation between accident consequences and input parameters.Loss of forced cooling(LOFC)represents an accident scenario of the SM-MSR,and the study of LOFC could offer useful information to improve physical thermohydraulic and structural designs.Therefore,this study investigates the uncertainty of LOFC consequences and the sensitivity of related parameters.The uncertainty of the LOFC consequences was analyzed using the Monte Carlo method,and multiple linear regression was employed to analyze the sensitivity of the input parameters.The uncertainty and sensitivity analyses showed that the maximum reactor outlet fuel salt temperature was 725.5℃,which is lower than the acceptable criterion,and five important parameters influencing LOFC consequences were identified.展开更多
Purpose:Citations can be used in evaluative bibliometrics to measure the impact of papers.However,citation analysis can be extended by a multi-dimensional perspective on citation impact which is intended to receive mo...Purpose:Citations can be used in evaluative bibliometrics to measure the impact of papers.However,citation analysis can be extended by a multi-dimensional perspective on citation impact which is intended to receive more specific information about the kind of received impact.Design/methodology/approach:Bornmann,Wray,and Haunschild(2019)introduced citation concept analysis(CCA)for capturing the importance and usefulness certain concepts have in subsequent research.The method is based on the analysis of citances-the contexts of citations in citing papers.This study applies the method by investigating the impact of various concepts introduced in the oeuvre of the world-leading French sociologist Pierre Bourdieu.Findings:We found that the most cited concepts are‘social capital’(with about 34%of the citances in the citing papers),‘cultural capital’,and‘habitus’(both with about 24%).On the other hand,the concepts‘doxa’and‘reflexivity’score only about 1%each.Research limitations:The formulation of search terms for identifying the concepts in the data and the citation context coverage are the most important limitations of the study.Practical implications:The results of this explorative study reflect the historical development of Bourdieu’s thought and its interface with different fields of study.Originality/value:The study demonstrates the high explanatory power of the CCA method.展开更多
Taking into account the characteristics of non-Newtonian fluids and the influence of latent heat of wax crystallization,this study establishes physical and mathematical models for the synergy of tubular heating and me...Taking into account the characteristics of non-Newtonian fluids and the influence of latent heat of wax crystallization,this study establishes physical and mathematical models for the synergy of tubular heating and mechanical stirring during the waxy crude oil heating process.Numerical calculations are conducted using the sliding grid technique and FVM.The focus of this study is on the impact of stirring rate(τ),horizontal deflection angle(θ1),vertical deflection angle(θ2),and stirring diameter(D)on the heating effect of crude oil.Our results show that asτincreases from 200 rpm to 500 rpm and D increases from 400 mm to 600 mm,there is an improvement in the average crude oil temperature and temperature uniformity.Additionally,heating efficiency increases by 0.5%and 1%,while the volume of the low-temperature region decreases by 57.01 m^(3) and 36.87 m3,respectively.Asθ1 andθ2 increase from 0°to 12°,the average crude oil temperature,temperature uniformity,and heating efficiency decrease,while the volume of the low-temperature region remains basically the same.Grey correlation analysis is used to rank the importance of stirring parameters in the following order:τ>θ1>θ2>D.Subsequently,multiple regression analysis is used to quantitatively describe the relationship between different stirring parameters and heat transfer evaluation indices through equations.Finally,based on entropy generation minimization,the stirring parameters with optimal heat transfer performance are obtained when τ=350 rpm,θ1=θ2=0°,and D=500 mm.展开更多
The solid electrolyte interphase(SEI)layer,formed on the electrode through electrolyte decomposition,has garnered significant attention over the past several decades.Numerous characterization studies have shown that t...The solid electrolyte interphase(SEI)layer,formed on the electrode through electrolyte decomposition,has garnered significant attention over the past several decades.Numerous characterization studies have shown that the SEI enhances the stability of both the electrolyte and electrode,particularly by mitigating the well-known cation-solvent co-intercalation in graphite electrodes in lithium-ion batteries.However,recent electrolyte exchange experiments have revealed that variations in electrolyte solvation structure and the resulting desolvation behaviors play a more dominant role than the SEI in influencing electrolyte and electrode stability,which in turn critically impacts battery performance.In addition to contributing to the ongoing debate,electrolyte exchange experiments have proven to be a valuable tool for analyzing failures in electrolytes,electrodes,and batteries.This review highlights the application of electrolyte exchange experiments across various metal-ion batteries,incorporating diverse combinations of electrolytes and electrodes.It examines the influence of electrolyte solvation structures and desolvation behaviors on the stability of both electrolytes and electrodes.The aim is to enhance the methodology of electrolyte exchange experiments to deepen the understanding of the molecular interactions among metal ions,anions,and solvents within the electrolyte.This approach complements existing insights into SEI effects,providing a more thorough and accurate framework for battery failure analysis.展开更多
Pu-erh tea,a traditional Chinese beverage,performs an anti-obesity function,but the correlation between its components and efficacy remains unknown.Here,we screened two Pu-erh teas with significant anti-obesity effica...Pu-erh tea,a traditional Chinese beverage,performs an anti-obesity function,but the correlation between its components and efficacy remains unknown.Here,we screened two Pu-erh teas with significant anti-obesity efficacies from 11 teas.In vitro experiments revealed that lipid accumulation in L02 cells and lipid synthesis in 3T3-L1 cells were significantly better inhibited by Tea-B than Tea-A.Further in vivo experiments using model mice revealed that the differences in chemical components generated two pathways in the anti-obesity efficacy and mechanism of Pu-erh teas.Tea-A changes the histomorphology of brown adipose tissue(BAT)and increases the abundance of Coriobacteriaceae_UCG_002 and cyclic AMP in guts through high chemical contents of cyclopentasiloxane,decamethyl,tridecane and 1,2,3-trimethoxybenzene,eventually increasing BAT activation and fat browning gene expression;the high content of hexadecane and 1,2-dimethoxybenzene in Tea-B reduces white adipose tissue(WAT)accumulation and the process of fatty liver,increases the abundance of Odoribacter and sphinganine 1-phosphate,inhibits the expression of lipid synthesis and transport genes.These mechanistic findings on the association of the representative bioactive components in Pu-erh teas with the anti-obesity phenotypes,gut microbes,gut metabolite structure and anti-obesity pathways,which were obtained for the first time,provide foundations for developing functional Pu-erh tea.展开更多
This research examines the optimal combination of solar panel and battery capacity in hybrid systems in 11 cities on the island of Borneo,utilizing the region’s significant solar energy potential and high irradiation...This research examines the optimal combination of solar panel and battery capacity in hybrid systems in 11 cities on the island of Borneo,utilizing the region’s significant solar energy potential and high irradiation levels.This research analyses the optimal combination of solar panels and battery capacity in 11 cities in Kalimantan using particle swarm optimization(PSO)and grey wolf optimization(GWO)algorithms to maximize energy output,reduce levelised energy costs,and maximally reduce carbon emissions.Results show Tara-kan as the most optimal location,generating 215,804.88 kWh for IDR 916.9/kWh and lowering emissions by 435,884.29 kgCO_(2)e,while Samarinda is the least optimal location.Economically,electricity tariffs of IDR 2,466.78/kWh and IDR 2,000/kWh generate a positive Net Present Value(NPV)with a payback period(PP)of 9-12 years,while a tariffof IDR 1,500/kWh is considered unfavorable.Thefindings demonstrate the effectiveness of PSO and GWO in optimizing the renewable energy system and confirm the project’sfinancial viability,with a positive NPV and reasonable PP.Implementing renewable energy systems in Kalimantan Island can improve energy effi-ciency and significantly reduce carbon emissions,supporting environmental sustainability goals.展开更多
Energy resolution calibration is crucial for gamma-ray spectral analysis,as measured using a scintillation detector.A locally constrained regularization method was proposed to determine the resolution calibration para...Energy resolution calibration is crucial for gamma-ray spectral analysis,as measured using a scintillation detector.A locally constrained regularization method was proposed to determine the resolution calibration parameters.First,a Monte Carlo simulation model consistent with an actual measurement system was constructed to obtain the energy deposition distribution in the scintillation crystal.Subsequently,the regularization objective function is established based on weighted least squares and additional constraints.Additional constraints were designed using a special weighting scheme based on the incident gamma-ray energies.Subsequently,an intelligent algorithm was introduced to search for the optimal resolution calibration parameters by minimizing the objective function.The most appropriate regularization parameter was determined through mathematical experiments.When the regularization parameter was 30,the calibrated results exhibited the minimum RMSE.Simulations and test pit experiments were conducted to verify the performance of the proposed method.The simulation results demonstrate that the proposed algorithm can determine resolution calibration parameters more accurately than the traditional weighted least squares,and the test pit experimental results show that the R-squares between the calibrated and measured spectra are larger than 0.99.The accurate resolution calibration parameters determined by the proposed method lay the foundation for gamma-ray spectral processing and simulation benchmarking.展开更多
Optimization and simplification of optical systems represent a milestone in advancing the development of handheld and portable laser-induced breakdown spectroscopy(LIBS)systems towards smaller,more integrated forms.Th...Optimization and simplification of optical systems represent a milestone in advancing the development of handheld and portable laser-induced breakdown spectroscopy(LIBS)systems towards smaller,more integrated forms.This research,for the first time,conducted a comprehensive optimization design and comparative analysis of three compact LIBS system optical paths:the paraxial optical path(OP),the off-axis OP,and the reflective OP.The differences in spectral intensity and stability among these paths were revealed,providing a scientific basis for selecting the optimal OP for LIBS systems.The research found that the paraxial OP excels in spectral performance and quantitative analysis accuracy,making it the preferred choice for compact LIBS systems.Specifically,the paraxial OP significantly enhances spectral intensity,achieving a 6 times improvement over the off-axis OP and an even more remarkable 150 times increase compared to the reflective OP,greatly enhancing detection sensitivity.Additionally,the relative standard deviation,spectral stability index,maintains a consistently low level,ranging from 10.9%to 13.4%,significantly outperforming the other two OPs and ensuring the reliability of analytical results.In the field of quantitative analysis,the paraxial OP also demonstrates higher accuracy,precision,and sensitivity,comparing to other OPs.The quantitative analysis models for Si,Cu,and Ti elements exhibit excellent fitting,providing users with high-quality quantitative analysis results that are of great significance for applications in material science,environmental monitoring,industrial inspection,and other fields.In summary,this study not only confirms the enormous application potential of the paraxial OP in compact LIBS systems but also provides valuable practical experience and theoretical support for the miniaturization and integration of LIBS systems.Looking ahead,with continuous technological advancements,the design of the paraxial OP is expected to further propel the widespread adoption of LIBS technology in portable,on-site detection applications.展开更多
We study the influence of disorder on the Moore–Read state by principal component analysis(PCA),which is one of the ground state candidates for the 5/2 fractional Hall state.By using PCA,the topological features of t...We study the influence of disorder on the Moore–Read state by principal component analysis(PCA),which is one of the ground state candidates for the 5/2 fractional Hall state.By using PCA,the topological features of the ground state wave functions with different disorder strengths can be distilled.As the disorder strength increases,the Moore–Read state will be destroyed.We explore the phase transition by analyzing the overlaps between the random sample wave functions and the topologically distilled state.The cross-point between the amplitudes of the principal component and its counterpart is the phase transition point.Additionally,the origin of the second component comes from the excited states,which is different from the Laughlin state.展开更多
The Shanghai Laser Electron Gamma Source(SLEGS)delivers quasi-monochromatic,continuously energy-tunableγ-ray beams.Based on a Photon Activation Analysis(PAA)method,SLEGS built and developed a photon activation analys...The Shanghai Laser Electron Gamma Source(SLEGS)delivers quasi-monochromatic,continuously energy-tunableγ-ray beams.Based on a Photon Activation Analysis(PAA)method,SLEGS built and developed a photon activation analysis platform,including online activation and offiine low background High-Purity Germanium(HPGe)detector measurement systems,as an alternative to direct measurement methods and low-throughput cross-tests.Owing to short half-lives spanning from minutes to days and characteristics such as ease of fabrication,cost-effectiveness,and stability,gold(~(197)Au)and zinc(~(64)Zn)emerge as favorable activation targets for theγ-ray beam flux monitor.Notably,they exhibit a multitude of advantages in monitoring theγ-ray beam flux,typically 10^(5)photons/s,with energies of 13.16 Me V to 19.08 Me V using a 3 mm coarse collimator.In particular,high-fluxγ-ray beam experiments can be conducted effectively.展开更多
Objective To explore potential keywords,research clusters,collaborative pattern,and research trends in the field of medical technology management(MTM)through bibliometric analysis,providing insights for researchers,po...Objective To explore potential keywords,research clusters,collaborative pattern,and research trends in the field of medical technology management(MTM)through bibliometric analysis,providing insights for researchers,policy makers,and hospital administrators.Methods A retrieval formula was applied to the title,abstract,and keywords in the Web of Science(WoS)Core Collection,along with system-recommended terms,to identify articles on MTM.A total of 181 articles published between 1974 and 2022 were retained for quantitative analysis.The global trend of research output;total citations,average citations,and H-index;and bibliographic coupling,co-authorship,and keyword co-occurrence were analyzed using VOSviewer.Results The number of articles on MTM has been steadily increasing year by year.The focus of research has shifted from addressing basic medical needs to prioritizing emergency response and medical information security.The United States,Italy,and the United Kingdom emerged as the main contributors,with the United States leading in both volume of publications(60 articles)and academic impact(H-index=21).Authors from the United Kingdom and the United States led the way in cross-border cooperation.The top five institutions,ranked by total link strength among cross-institutional authors,were primarily located in Canada and Spain.Conclusions The field of MTM has experienced stable growth over the past three decades(1993-2022).The shift of research focus has prompted a heightened emphasis on protecting patient privacy and ensuring the security of medical data.Future research should emphasize interdisciplinary and professional collaboration,as well as international cooperation and open sharing of knowledge.展开更多
Biomedical big data,characterized by its massive scale,multi-dimensionality,and heterogeneity,offers novel perspectives for disease research,elucidates biological principles,and simultaneously prompts changes in relat...Biomedical big data,characterized by its massive scale,multi-dimensionality,and heterogeneity,offers novel perspectives for disease research,elucidates biological principles,and simultaneously prompts changes in related research methodologies.Biomedical ontology,as a shared formal conceptual system,not only offers standardized terms for multi-source biomedical data but also provides a solid data foundation and framework for biomedical research.In this review,we summarize enrichment analysis and deep learning for biomedical ontology based on its structure and semantic annotation properties,highlighting how technological advancements are enabling the more comprehensive use of ontology information.Enrichment analysis represents an important application of ontology to elucidate the potential biological significance for a particular molecular list.Deep learning,on the other hand,represents an increasingly powerful analytical tool that can be more widely combined with ontology for analysis and prediction.With the continuous evolution of big data technologies,the integration of these technologies with biomedical ontologies is opening up exciting new possibilities for advancing biomedical research.展开更多
The swinging-loading process is essential for automatic artillery loading systems.This study focuses on the problems of reliability analysis that affect swinging-loading positioning accuracy.A dynamic model for a mult...The swinging-loading process is essential for automatic artillery loading systems.This study focuses on the problems of reliability analysis that affect swinging-loading positioning accuracy.A dynamic model for a multi degree-of-freedom swinging-loading-integrated rigid-flexible coupling system is established.This model is based on the identification of key parameters and platform experiments.Based on the spatial geometric relationship between the breech and loader during modular charge transfer and the possible maximum interference depth of the modular charge,a new failure criterion for estimating the reliability of swinging-loading positioning accuracy is proposed.Considering the uncertainties in the operation of the pendulum loader,the direct probability integration method is introduced to analyze the reliability of the swinging-loading positioning accuracy under three different charge numbers.The results indicate that under two and four charges,the swinging-loading process shows outstanding reliability.However,an unstable stage appears when the swinging motion occurred under six charges,with a maximum positioning failure probability of 0.0712.A comparison between the results obtained under the conventional and proposed criteria further reveals the effectiveness and necessity of the proposed criterion.展开更多
Compared to other energy sources,nuclear reactors offer several advantages as a spacecraft power source,including compact size,high power density,and long operating life.These qualities make nuclear power an ideal ene...Compared to other energy sources,nuclear reactors offer several advantages as a spacecraft power source,including compact size,high power density,and long operating life.These qualities make nuclear power an ideal energy source for future deep space exploration.A whole system model of the space nuclear reactor consisting of the reactor neutron kinetics,reactivity control,reactor heat transfer,heat exchanger,and thermoelectric converter was developed.In addition,an electrical power control system was designed based on the developed dynamic model.The GRS method was used to quantitatively calculate the uncertainty of coupling parameters of the neutronics,thermal-hydraulics,and control system for the space reactor.The Spearman correlation coefficient was applied in the sensitivity analysis of system input parameters to output parameters.The calculation results showed that the uncertainty of the output parameters caused by coupling parameters had the most considerable variation,with a relative standard deviation<2.01%.Effective delayed neutron fraction was most sensitive to electrical power.To obtain optimal control performance,the non-dominated sorting genetic algorithm method was employed to optimize the controller parameters based on the uncertainty quantification calculation.Two typical transient simulations were conducted to test the adaptive ability of the optimized controller in the uncertainty dynamic system,including 100%full power(FP)to 90%FP step load reduction transient and 5%FP/min linear variable load transient.The results showed that,considering the influence of system uncertainty,the optimized controller could improve the response speed and load following accuracy of electrical power control,in which the effectiveness and superiority have been verified.展开更多
Reconfigurable intelligent surface(RIS)is a novel meta-material which can form a smart radio environment by dynamically altering reflection directions of the impinging electromagnetic waves.In the prior literature,the...Reconfigurable intelligent surface(RIS)is a novel meta-material which can form a smart radio environment by dynamically altering reflection directions of the impinging electromagnetic waves.In the prior literature,the inter-RIS links which also contribute to the performance of the whole system are usually neglected when multiple RISs are deployed.In this paper we investigate a general double-RIS assisted multiple-input multiple-output(MIMO)wireless communication system under spatially correlated non line-of-sight propagation channels,where the cooperation of the double RISs is also considered.The design objective is to maximize the achievable ergodic rate based on full statistical channel state information(CSI).Specifically,we firstly present a closedform asymptotic expression for the achievable ergodic rate by utilizing replica method from statistical physics.Then a full statistical CSI-enabled optimal design is proposed which avoids high pilot training overhead compared to instantaneous CSI-enabled design.To further reduce the signal processing overhead and lower the complexity for practical realization,a common-phase scheme is proposed to design the double RISs.Simulation results show that the derived asymptotic ergodic rate is quite accurate even for small-sized antenna arrays.And the proposed optimization algorithm can achieve substantial gain at the expense of a low overhead and complexity.Furthermore,the cooperative double-RIS assisted MIMO framework is proven to achieve superior ergodic rate performance and high communication reliability under harsh propagation environment.展开更多
To the editor:Peer workers-people with personal experiences of using mental health services,trained to provide support to others currently using similar services--are increasingly integrated into the workforce of ment...To the editor:Peer workers-people with personal experiences of using mental health services,trained to provide support to others currently using similar services--are increasingly integrated into the workforce of mental health systems internationally.展开更多
With the advancement of more electric aircraft(MEA)technology,the application of electro-hydrostatic actuators(EHAs)in aircraft actuation systems has become increasingly prevalent.This paper focuses on the modeling an...With the advancement of more electric aircraft(MEA)technology,the application of electro-hydrostatic actuators(EHAs)in aircraft actuation systems has become increasingly prevalent.This paper focuses on the modeling and mode switching analysis of EHA used in the primary flight control actuation systems of large aircraft,addressing the challenges associated with mode switching.First,we analyze the functional architecture and operational characteristics of multi-mode EHA,and sumarize the operating modes and implementation methods.Based on the EHA system architecture,we then develop a theoretical mathematical model and a simulation model.Using the simulation model,we analyze the performance of the EHA during normal operation.Finally,the performance of the EHA during mode switching under various functional switching scenarios is investigated.The results indicate that the EHA meets the performance requirements in terms of accuracy,bandwidth,and load capacity.Additionally,the hydraulic cylinder operates smoothly during the EHA mode switching,and the response time for switching between different modes is less than the specified threshold.These findings validate the system performance of multi-mode EHA,which helps to improve the reliability of EHA and the safety of aircraft flight control systems.展开更多
Shale gas, as a clean, low-carbon, and abundant unconventional natural gas resource, plays a crucial role in achieving clean energy transformation and carbon neutrality. The Fuling shale gas reservoir in Sichuan Basin...Shale gas, as a clean, low-carbon, and abundant unconventional natural gas resource, plays a crucial role in achieving clean energy transformation and carbon neutrality. The Fuling shale gas reservoir in Sichuan Basin stands out as China's most promising area for shale gas exploration and recovery. However, the continuous recovery of shale gas in the southern Sichuan Basin has led to well interference events in hundreds of wells, with the furthest well distance reaching over 2000 m. This study introduces a multi-scale approach for transient analysis of a multi-well horizontal pad with well interference in shale gas reservoirs. The approach utilizes Laplace transform technology, boundary element theory, and the finite difference method to address the complexities of the system. Well interference is managed using the pressure superposition principle. To validate the proposed multi-scale method, a commercial numerical simulator is employed. The comprehensive pressure behavior of a multi-well horizontal pad in a shale gas reservoir is analyzed, encompassing wellbore storage effect, skin effect, bilinear flow, linear flow, pseudo-radial flow of primary fractures, well interference period, dual-porosity flow, pseudo-radial flow of the total system, and boundary-dominated flow. A case study is conducted on the typical well, the well with the longest production history in the Fuling shale gas reservoir. The rate transient analysis is conducted to integrate up to 229 days of shale gas production daily data and wellhead pressure data, enabling the generation of pressure behavior under unit flow rate. The results indicate that the linear flow, transitional flow, and boundary-dominated flow are more likely to be observed in the actual data. Secondary fractures are considered to be the primary pathways for fluid migration during well interference events. The evaluated formation permeability is 2.58 × 10^(-2) mD, the well spacing is 227.8 m, the diffusion coefficient is 1.49 × 10^(-4), and the skin factor is 0.09.展开更多
文摘The WSC proteins produced by Penicillium expansum play a crucial role in causing blue mold on pears.To analyze the role of the WSC1 gene in the pathogenic process of this fungal pathogen,we conducted transcriptomic analysis of a WSC1 knockout(ΔWSC1)strain.The knockout of WSC1 significantly altered the gene expression profile in P.expansum,particularly for genes involved in cell wall integrity,signaling,stress response,and toxin production.The differential expression of these genes might make theΔWSC1 strain more vulnerable to environmental stress,while reducing the toxin production capacity,ultimately leading to a decrease in the pathogenicity.The transcriptomic analysis revealed that the expression of genes related to stress response signals,defense mechanisms and oxidative stress management changed when pear fruits were infected with theΔWSC1 strain.These changes may trigger a cascade of responses in pear fruits.In addition,compared with those infected with the wild-type strain,pear fruits infected with theΔWSC1 strain exhibited up-regulated expression of genes related to defense and oxidative stress.This study clarifies how the WSC1 gene influences P.expansum’s ability to infect pear fruits and how pear fruits respond to the infection.
基金Research Project Supported by Shanxi Scholarship Council of China(2021-029)International Cooperation Base and Platform Project of Shanxi Province(202104041101019)Basic Research Plan of Shanxi Province(202203021211129)。
文摘In this paper,we develop a multi-scalar auxiliary variables(MSAV)scheme for the Cahn-Hilliard Magnetohydrodynamics system by introducing two scalar auxiliary variables(SAV).This scheme is linear,fully decoupled and unconditionally stable in energy.Subsequently,we provide a detailed implementation procedure for full decoupling.Thus,at each time step,only a series of linear differential equations with constant coefficients need to be solved.To validate the effectiveness of our approach,we conduct an error analysis for this first-order scheme.Finally,some numerical experiments are provided to verify the energy dissipation of the system and the convergence of the proposed approach.
基金supported by the Youth Innovation Promotion Association(YIPA)(No.E329290101)of the Chinese Academy of Sciences。
文摘Molten salt reactors(MSRs)are a promising candidate for Generation IV reactor technologies,and the small modular molten salt reactor(SM-MSR),which utilizes low-enriched uranium and thorium fuels,is regarded as a wise development path to accelerate deployment time.Uncertainty and sensitivity analyses of accidents guide nuclear reactor design and safety analyses.Uncertainty analysis can ascertain the safety margin,and sensitivity analysis can reveal the correlation between accident consequences and input parameters.Loss of forced cooling(LOFC)represents an accident scenario of the SM-MSR,and the study of LOFC could offer useful information to improve physical thermohydraulic and structural designs.Therefore,this study investigates the uncertainty of LOFC consequences and the sensitivity of related parameters.The uncertainty of the LOFC consequences was analyzed using the Monte Carlo method,and multiple linear regression was employed to analyze the sensitivity of the input parameters.The uncertainty and sensitivity analyses showed that the maximum reactor outlet fuel salt temperature was 725.5℃,which is lower than the acceptable criterion,and five important parameters influencing LOFC consequences were identified.
文摘Purpose:Citations can be used in evaluative bibliometrics to measure the impact of papers.However,citation analysis can be extended by a multi-dimensional perspective on citation impact which is intended to receive more specific information about the kind of received impact.Design/methodology/approach:Bornmann,Wray,and Haunschild(2019)introduced citation concept analysis(CCA)for capturing the importance and usefulness certain concepts have in subsequent research.The method is based on the analysis of citances-the contexts of citations in citing papers.This study applies the method by investigating the impact of various concepts introduced in the oeuvre of the world-leading French sociologist Pierre Bourdieu.Findings:We found that the most cited concepts are‘social capital’(with about 34%of the citances in the citing papers),‘cultural capital’,and‘habitus’(both with about 24%).On the other hand,the concepts‘doxa’and‘reflexivity’score only about 1%each.Research limitations:The formulation of search terms for identifying the concepts in the data and the citation context coverage are the most important limitations of the study.Practical implications:The results of this explorative study reflect the historical development of Bourdieu’s thought and its interface with different fields of study.Originality/value:The study demonstrates the high explanatory power of the CCA method.
基金supported by the National Natural Science Foundation of China(Grant no.52304065)China Postdoctoral Science Foundation(Grant no.2022MD723759).
文摘Taking into account the characteristics of non-Newtonian fluids and the influence of latent heat of wax crystallization,this study establishes physical and mathematical models for the synergy of tubular heating and mechanical stirring during the waxy crude oil heating process.Numerical calculations are conducted using the sliding grid technique and FVM.The focus of this study is on the impact of stirring rate(τ),horizontal deflection angle(θ1),vertical deflection angle(θ2),and stirring diameter(D)on the heating effect of crude oil.Our results show that asτincreases from 200 rpm to 500 rpm and D increases from 400 mm to 600 mm,there is an improvement in the average crude oil temperature and temperature uniformity.Additionally,heating efficiency increases by 0.5%and 1%,while the volume of the low-temperature region decreases by 57.01 m^(3) and 36.87 m3,respectively.Asθ1 andθ2 increase from 0°to 12°,the average crude oil temperature,temperature uniformity,and heating efficiency decrease,while the volume of the low-temperature region remains basically the same.Grey correlation analysis is used to rank the importance of stirring parameters in the following order:τ>θ1>θ2>D.Subsequently,multiple regression analysis is used to quantitatively describe the relationship between different stirring parameters and heat transfer evaluation indices through equations.Finally,based on entropy generation minimization,the stirring parameters with optimal heat transfer performance are obtained when τ=350 rpm,θ1=θ2=0°,and D=500 mm.
基金supported by the Jilin Provincial Scientific and Technological Development Program(YDZJ202401572ZYTS)the Overseas Expertise Introduction Project for Discipline Innovation of China(D18012)+1 种基金Education Department of Jilin Province(JJKH20240678KJ)the National Natural Science Foundation of China(22122904,22109155,22379136)。
文摘The solid electrolyte interphase(SEI)layer,formed on the electrode through electrolyte decomposition,has garnered significant attention over the past several decades.Numerous characterization studies have shown that the SEI enhances the stability of both the electrolyte and electrode,particularly by mitigating the well-known cation-solvent co-intercalation in graphite electrodes in lithium-ion batteries.However,recent electrolyte exchange experiments have revealed that variations in electrolyte solvation structure and the resulting desolvation behaviors play a more dominant role than the SEI in influencing electrolyte and electrode stability,which in turn critically impacts battery performance.In addition to contributing to the ongoing debate,electrolyte exchange experiments have proven to be a valuable tool for analyzing failures in electrolytes,electrodes,and batteries.This review highlights the application of electrolyte exchange experiments across various metal-ion batteries,incorporating diverse combinations of electrolytes and electrodes.It examines the influence of electrolyte solvation structures and desolvation behaviors on the stability of both electrolytes and electrodes.The aim is to enhance the methodology of electrolyte exchange experiments to deepen the understanding of the molecular interactions among metal ions,anions,and solvents within the electrolyte.This approach complements existing insights into SEI effects,providing a more thorough and accurate framework for battery failure analysis.
基金The financial support received from the Shenzhen Science and Technology Innovation Commission(KCXFZ20201221173207022,WDZC20200821141349001)Shenzhen Bay Laboratory Startup Fund(21310041,S234602003)。
文摘Pu-erh tea,a traditional Chinese beverage,performs an anti-obesity function,but the correlation between its components and efficacy remains unknown.Here,we screened two Pu-erh teas with significant anti-obesity efficacies from 11 teas.In vitro experiments revealed that lipid accumulation in L02 cells and lipid synthesis in 3T3-L1 cells were significantly better inhibited by Tea-B than Tea-A.Further in vivo experiments using model mice revealed that the differences in chemical components generated two pathways in the anti-obesity efficacy and mechanism of Pu-erh teas.Tea-A changes the histomorphology of brown adipose tissue(BAT)and increases the abundance of Coriobacteriaceae_UCG_002 and cyclic AMP in guts through high chemical contents of cyclopentasiloxane,decamethyl,tridecane and 1,2,3-trimethoxybenzene,eventually increasing BAT activation and fat browning gene expression;the high content of hexadecane and 1,2-dimethoxybenzene in Tea-B reduces white adipose tissue(WAT)accumulation and the process of fatty liver,increases the abundance of Odoribacter and sphinganine 1-phosphate,inhibits the expression of lipid synthesis and transport genes.These mechanistic findings on the association of the representative bioactive components in Pu-erh teas with the anti-obesity phenotypes,gut microbes,gut metabolite structure and anti-obesity pathways,which were obtained for the first time,provide foundations for developing functional Pu-erh tea.
基金supported by non-APBN UM 2024,Indonesia,with contract number 5.4.111/UN32.14.1/LT/2024.
文摘This research examines the optimal combination of solar panel and battery capacity in hybrid systems in 11 cities on the island of Borneo,utilizing the region’s significant solar energy potential and high irradiation levels.This research analyses the optimal combination of solar panels and battery capacity in 11 cities in Kalimantan using particle swarm optimization(PSO)and grey wolf optimization(GWO)algorithms to maximize energy output,reduce levelised energy costs,and maximally reduce carbon emissions.Results show Tara-kan as the most optimal location,generating 215,804.88 kWh for IDR 916.9/kWh and lowering emissions by 435,884.29 kgCO_(2)e,while Samarinda is the least optimal location.Economically,electricity tariffs of IDR 2,466.78/kWh and IDR 2,000/kWh generate a positive Net Present Value(NPV)with a payback period(PP)of 9-12 years,while a tariffof IDR 1,500/kWh is considered unfavorable.Thefindings demonstrate the effectiveness of PSO and GWO in optimizing the renewable energy system and confirm the project’sfinancial viability,with a positive NPV and reasonable PP.Implementing renewable energy systems in Kalimantan Island can improve energy effi-ciency and significantly reduce carbon emissions,supporting environmental sustainability goals.
基金supported by the National Natural Science Foundation of China(No.41804141)。
文摘Energy resolution calibration is crucial for gamma-ray spectral analysis,as measured using a scintillation detector.A locally constrained regularization method was proposed to determine the resolution calibration parameters.First,a Monte Carlo simulation model consistent with an actual measurement system was constructed to obtain the energy deposition distribution in the scintillation crystal.Subsequently,the regularization objective function is established based on weighted least squares and additional constraints.Additional constraints were designed using a special weighting scheme based on the incident gamma-ray energies.Subsequently,an intelligent algorithm was introduced to search for the optimal resolution calibration parameters by minimizing the objective function.The most appropriate regularization parameter was determined through mathematical experiments.When the regularization parameter was 30,the calibrated results exhibited the minimum RMSE.Simulations and test pit experiments were conducted to verify the performance of the proposed method.The simulation results demonstrate that the proposed algorithm can determine resolution calibration parameters more accurately than the traditional weighted least squares,and the test pit experimental results show that the R-squares between the calibrated and measured spectra are larger than 0.99.The accurate resolution calibration parameters determined by the proposed method lay the foundation for gamma-ray spectral processing and simulation benchmarking.
基金financially supported by National Natural Science Foundation of China (Nos.62305392 and 62305123)Independent Research and Development Project of Naval Engineering University (No.2023504050)the Nursery Plan Project of Navel University of Engineering (2022)。
文摘Optimization and simplification of optical systems represent a milestone in advancing the development of handheld and portable laser-induced breakdown spectroscopy(LIBS)systems towards smaller,more integrated forms.This research,for the first time,conducted a comprehensive optimization design and comparative analysis of three compact LIBS system optical paths:the paraxial optical path(OP),the off-axis OP,and the reflective OP.The differences in spectral intensity and stability among these paths were revealed,providing a scientific basis for selecting the optimal OP for LIBS systems.The research found that the paraxial OP excels in spectral performance and quantitative analysis accuracy,making it the preferred choice for compact LIBS systems.Specifically,the paraxial OP significantly enhances spectral intensity,achieving a 6 times improvement over the off-axis OP and an even more remarkable 150 times increase compared to the reflective OP,greatly enhancing detection sensitivity.Additionally,the relative standard deviation,spectral stability index,maintains a consistently low level,ranging from 10.9%to 13.4%,significantly outperforming the other two OPs and ensuring the reliability of analytical results.In the field of quantitative analysis,the paraxial OP also demonstrates higher accuracy,precision,and sensitivity,comparing to other OPs.The quantitative analysis models for Si,Cu,and Ti elements exhibit excellent fitting,providing users with high-quality quantitative analysis results that are of great significance for applications in material science,environmental monitoring,industrial inspection,and other fields.In summary,this study not only confirms the enormous application potential of the paraxial OP in compact LIBS systems but also provides valuable practical experience and theoretical support for the miniaturization and integration of LIBS systems.Looking ahead,with continuous technological advancements,the design of the paraxial OP is expected to further propel the widespread adoption of LIBS technology in portable,on-site detection applications.
基金supported by the National Natural Science Foundation of China(Grant Nos.12104075 and 12347101).
文摘We study the influence of disorder on the Moore–Read state by principal component analysis(PCA),which is one of the ground state candidates for the 5/2 fractional Hall state.By using PCA,the topological features of the ground state wave functions with different disorder strengths can be distilled.As the disorder strength increases,the Moore–Read state will be destroyed.We explore the phase transition by analyzing the overlaps between the random sample wave functions and the topologically distilled state.The cross-point between the amplitudes of the principal component and its counterpart is the phase transition point.Additionally,the origin of the second component comes from the excited states,which is different from the Laughlin state.
基金supported by National Key Research and Development Program of China(Nos.2022YFA1602404 and2023YFA1606901)the National Natural Science Foundation of China(Nos.12275338,12388102,and U2441221)the Key Laboratory of Nuclear Data Foundation(JCKY2022201C152)。
文摘The Shanghai Laser Electron Gamma Source(SLEGS)delivers quasi-monochromatic,continuously energy-tunableγ-ray beams.Based on a Photon Activation Analysis(PAA)method,SLEGS built and developed a photon activation analysis platform,including online activation and offiine low background High-Purity Germanium(HPGe)detector measurement systems,as an alternative to direct measurement methods and low-throughput cross-tests.Owing to short half-lives spanning from minutes to days and characteristics such as ease of fabrication,cost-effectiveness,and stability,gold(~(197)Au)and zinc(~(64)Zn)emerge as favorable activation targets for theγ-ray beam flux monitor.Notably,they exhibit a multitude of advantages in monitoring theγ-ray beam flux,typically 10^(5)photons/s,with energies of 13.16 Me V to 19.08 Me V using a 3 mm coarse collimator.In particular,high-fluxγ-ray beam experiments can be conducted effectively.
文摘Objective To explore potential keywords,research clusters,collaborative pattern,and research trends in the field of medical technology management(MTM)through bibliometric analysis,providing insights for researchers,policy makers,and hospital administrators.Methods A retrieval formula was applied to the title,abstract,and keywords in the Web of Science(WoS)Core Collection,along with system-recommended terms,to identify articles on MTM.A total of 181 articles published between 1974 and 2022 were retained for quantitative analysis.The global trend of research output;total citations,average citations,and H-index;and bibliographic coupling,co-authorship,and keyword co-occurrence were analyzed using VOSviewer.Results The number of articles on MTM has been steadily increasing year by year.The focus of research has shifted from addressing basic medical needs to prioritizing emergency response and medical information security.The United States,Italy,and the United Kingdom emerged as the main contributors,with the United States leading in both volume of publications(60 articles)and academic impact(H-index=21).Authors from the United Kingdom and the United States led the way in cross-border cooperation.The top five institutions,ranked by total link strength among cross-institutional authors,were primarily located in Canada and Spain.Conclusions The field of MTM has experienced stable growth over the past three decades(1993-2022).The shift of research focus has prompted a heightened emphasis on protecting patient privacy and ensuring the security of medical data.Future research should emphasize interdisciplinary and professional collaboration,as well as international cooperation and open sharing of knowledge.
基金supported by the National Natural Science Foundation of China(61902095).
文摘Biomedical big data,characterized by its massive scale,multi-dimensionality,and heterogeneity,offers novel perspectives for disease research,elucidates biological principles,and simultaneously prompts changes in related research methodologies.Biomedical ontology,as a shared formal conceptual system,not only offers standardized terms for multi-source biomedical data but also provides a solid data foundation and framework for biomedical research.In this review,we summarize enrichment analysis and deep learning for biomedical ontology based on its structure and semantic annotation properties,highlighting how technological advancements are enabling the more comprehensive use of ontology information.Enrichment analysis represents an important application of ontology to elucidate the potential biological significance for a particular molecular list.Deep learning,on the other hand,represents an increasingly powerful analytical tool that can be more widely combined with ontology for analysis and prediction.With the continuous evolution of big data technologies,the integration of these technologies with biomedical ontologies is opening up exciting new possibilities for advancing biomedical research.
文摘The swinging-loading process is essential for automatic artillery loading systems.This study focuses on the problems of reliability analysis that affect swinging-loading positioning accuracy.A dynamic model for a multi degree-of-freedom swinging-loading-integrated rigid-flexible coupling system is established.This model is based on the identification of key parameters and platform experiments.Based on the spatial geometric relationship between the breech and loader during modular charge transfer and the possible maximum interference depth of the modular charge,a new failure criterion for estimating the reliability of swinging-loading positioning accuracy is proposed.Considering the uncertainties in the operation of the pendulum loader,the direct probability integration method is introduced to analyze the reliability of the swinging-loading positioning accuracy under three different charge numbers.The results indicate that under two and four charges,the swinging-loading process shows outstanding reliability.However,an unstable stage appears when the swinging motion occurred under six charges,with a maximum positioning failure probability of 0.0712.A comparison between the results obtained under the conventional and proposed criteria further reveals the effectiveness and necessity of the proposed criterion.
基金supported by the National Natural Science Foundation of China(12305185)Natural Science Foundation of Hunan Province,China(No.2023JJ50122)+1 种基金International Cooperative Research Project of the Ministry of Education,China(No.HZKY20220355)Scientific Research Foundation of the Education Department of Hunan Province,China(No.22A0307).
文摘Compared to other energy sources,nuclear reactors offer several advantages as a spacecraft power source,including compact size,high power density,and long operating life.These qualities make nuclear power an ideal energy source for future deep space exploration.A whole system model of the space nuclear reactor consisting of the reactor neutron kinetics,reactivity control,reactor heat transfer,heat exchanger,and thermoelectric converter was developed.In addition,an electrical power control system was designed based on the developed dynamic model.The GRS method was used to quantitatively calculate the uncertainty of coupling parameters of the neutronics,thermal-hydraulics,and control system for the space reactor.The Spearman correlation coefficient was applied in the sensitivity analysis of system input parameters to output parameters.The calculation results showed that the uncertainty of the output parameters caused by coupling parameters had the most considerable variation,with a relative standard deviation<2.01%.Effective delayed neutron fraction was most sensitive to electrical power.To obtain optimal control performance,the non-dominated sorting genetic algorithm method was employed to optimize the controller parameters based on the uncertainty quantification calculation.Two typical transient simulations were conducted to test the adaptive ability of the optimized controller in the uncertainty dynamic system,including 100%full power(FP)to 90%FP step load reduction transient and 5%FP/min linear variable load transient.The results showed that,considering the influence of system uncertainty,the optimized controller could improve the response speed and load following accuracy of electrical power control,in which the effectiveness and superiority have been verified.
基金supported in part by the Xi’an Jiaotong-Liverpool University(XJTLU)Research Development Fund(2024–2027)under Grant RDF-23-02-010supported in part by the Guangdong Basic and Applied Basic Research Foundation under Grant 2023A1515110732+5 种基金supported in part by the National Natural Science Foundation of China(NSFC)under Grant 62071247supported in part by the Science and Technology Development Fund,Macao,China SAR under Grants 0087/2022/AFJ and 001/2024/SKLin part by the National Natural Science Foundation of China under Grant 62261160650in part by the Research Committee of University of Macao,Macao SAR,China under Grants MYRG-GRG2023-00116-FST-UMDF and MYRG2020-00095-FSTsupported in part by the NSFC under Grant 62261160576 and 62301148in part by the Fundamental Research Funds for the Central Universities under Grant 2242023K5003.
文摘Reconfigurable intelligent surface(RIS)is a novel meta-material which can form a smart radio environment by dynamically altering reflection directions of the impinging electromagnetic waves.In the prior literature,the inter-RIS links which also contribute to the performance of the whole system are usually neglected when multiple RISs are deployed.In this paper we investigate a general double-RIS assisted multiple-input multiple-output(MIMO)wireless communication system under spatially correlated non line-of-sight propagation channels,where the cooperation of the double RISs is also considered.The design objective is to maximize the achievable ergodic rate based on full statistical channel state information(CSI).Specifically,we firstly present a closedform asymptotic expression for the achievable ergodic rate by utilizing replica method from statistical physics.Then a full statistical CSI-enabled optimal design is proposed which avoids high pilot training overhead compared to instantaneous CSI-enabled design.To further reduce the signal processing overhead and lower the complexity for practical realization,a common-phase scheme is proposed to design the double RISs.Simulation results show that the derived asymptotic ergodic rate is quite accurate even for small-sized antenna arrays.And the proposed optimization algorithm can achieve substantial gain at the expense of a low overhead and complexity.Furthermore,the cooperative double-RIS assisted MIMO framework is proven to achieve superior ergodic rate performance and high communication reliability under harsh propagation environment.
基金funded by National Institute for Health Research(NIHR)(RP-PG-1212-20019)。
文摘To the editor:Peer workers-people with personal experiences of using mental health services,trained to provide support to others currently using similar services--are increasingly integrated into the workforce of mental health systems internationally.
基金supported by the Chinese Civil Aircraft Project(No.MJ-2017-S49).
文摘With the advancement of more electric aircraft(MEA)technology,the application of electro-hydrostatic actuators(EHAs)in aircraft actuation systems has become increasingly prevalent.This paper focuses on the modeling and mode switching analysis of EHA used in the primary flight control actuation systems of large aircraft,addressing the challenges associated with mode switching.First,we analyze the functional architecture and operational characteristics of multi-mode EHA,and sumarize the operating modes and implementation methods.Based on the EHA system architecture,we then develop a theoretical mathematical model and a simulation model.Using the simulation model,we analyze the performance of the EHA during normal operation.Finally,the performance of the EHA during mode switching under various functional switching scenarios is investigated.The results indicate that the EHA meets the performance requirements in terms of accuracy,bandwidth,and load capacity.Additionally,the hydraulic cylinder operates smoothly during the EHA mode switching,and the response time for switching between different modes is less than the specified threshold.These findings validate the system performance of multi-mode EHA,which helps to improve the reliability of EHA and the safety of aircraft flight control systems.
基金support from the National Natural Science Foundation of China(12202042)the Fundamental Research Funds for the Central Universities(QNXM20220011,FRF-TP-22-119A1,FRF-IDRY-22-001)+2 种基金the Open Fund Project of Sinopec State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development(33550000-22-ZC0613-0269)China Postdoctoral Science Foundations(2021M700391)High-end Foreign Expert Introduction Program(G2023105006L).
文摘Shale gas, as a clean, low-carbon, and abundant unconventional natural gas resource, plays a crucial role in achieving clean energy transformation and carbon neutrality. The Fuling shale gas reservoir in Sichuan Basin stands out as China's most promising area for shale gas exploration and recovery. However, the continuous recovery of shale gas in the southern Sichuan Basin has led to well interference events in hundreds of wells, with the furthest well distance reaching over 2000 m. This study introduces a multi-scale approach for transient analysis of a multi-well horizontal pad with well interference in shale gas reservoirs. The approach utilizes Laplace transform technology, boundary element theory, and the finite difference method to address the complexities of the system. Well interference is managed using the pressure superposition principle. To validate the proposed multi-scale method, a commercial numerical simulator is employed. The comprehensive pressure behavior of a multi-well horizontal pad in a shale gas reservoir is analyzed, encompassing wellbore storage effect, skin effect, bilinear flow, linear flow, pseudo-radial flow of primary fractures, well interference period, dual-porosity flow, pseudo-radial flow of the total system, and boundary-dominated flow. A case study is conducted on the typical well, the well with the longest production history in the Fuling shale gas reservoir. The rate transient analysis is conducted to integrate up to 229 days of shale gas production daily data and wellhead pressure data, enabling the generation of pressure behavior under unit flow rate. The results indicate that the linear flow, transitional flow, and boundary-dominated flow are more likely to be observed in the actual data. Secondary fractures are considered to be the primary pathways for fluid migration during well interference events. The evaluated formation permeability is 2.58 × 10^(-2) mD, the well spacing is 227.8 m, the diffusion coefficient is 1.49 × 10^(-4), and the skin factor is 0.09.