Simulation study on the cylindrical gear meshing with the evolution gear meshing stiffness is being done for better understanding the dynamic characteristics of the kinematics.With consideration of damping,bearing cle...Simulation study on the cylindrical gear meshing with the evolution gear meshing stiffness is being done for better understanding the dynamic characteristics of the kinematics.With consideration of damping,bearing clearance and gear backlash nonlinearity,the dynamic model is set up and computed in MATLAB.The analysis about the relationship between the kinematic responses and the meshing stiffness are carried out.And the results showed that as the gear mesh stiffness is changed from small to large,the performance of the system is changed from the harmonic stable periodic motion to with one times,two times,four times,ending chaos of the stability of the bifurcation.The research results would have theoretical guidance value for the fault diagnosis in engineering.展开更多
The contact characteristics of the rough tooth surface during the meshing process are significantly affected by the lubrication state.The coupling effect of tooth surface roughness and lubrication on meshing character...The contact characteristics of the rough tooth surface during the meshing process are significantly affected by the lubrication state.The coupling effect of tooth surface roughness and lubrication on meshing characteristics of planetary gear is studied.An improved three-dimensional(3 D)anisotropic tooth surface roughness fractal model is proposed based on the experimental parameters.Considering asperity contact and elastohydrodynamic lubrication(EHL),the contact load and flexibility deformation of the tooth surface are derived,and the deformation compatibility equation of the 3 D loaded tooth contact analysis(3 D-LTCA)method is improved.The asperity of the tooth surface changes the system from EHL to mixed lubrication and reduces the stiffness of the oil film.Compared with the sun planet gear,the asperity has a greater effect on the meshing characteristics of the ring-planet gear.Compared with the proposed method,the comprehensive stiffness obtained by the traditional calculation method considering the lubrication effect is smaller,especially for the ring-planet gear.Compared with roughness,speed and viscosity,the meshing characteristics of planetary gears are most sensitive to torque.展开更多
A nonlinear model of anti-backlash gear with time-varying friction and mesh stiffness was proposed for the further study on dynamic characteristics of anti-backlash gear. In order to improve the model precision, appli...A nonlinear model of anti-backlash gear with time-varying friction and mesh stiffness was proposed for the further study on dynamic characteristics of anti-backlash gear. In order to improve the model precision, applied force analysis was completed in detail, and single or double tooth meshing states of two gear pairs at any timing were determined according to the meshing characteristic of anti-backlash gear. The influences of friction and variations of damping ratio on dynamic transmission error were analyzed finally by numerical calculation and the results show that anti-backlash gear can increase the composite mesh stiffness comparing with the mesh stiffness of the normal gear pair. At the pitch points where the frictions change their signs, additional impulsive effects are observed. The width of impulsive in the same value of center frequency is wider than that without friction, and the amplitude is lower. When gear pairs mesh in and out, damping can reduce the vibration and impact.展开更多
Cycloid speed reducers are widely used in many industrial areas due to the advantages of compact size, high reduction ratio and high stiffness. However, currently, there are not many analytical models for the mesh sti...Cycloid speed reducers are widely used in many industrial areas due to the advantages of compact size, high reduction ratio and high stiffness. However, currently, there are not many analytical models for the mesh stiffness calculation, which is a crucial parameter for the high-fidelity gear dynamic model. This is partially due to the difficulty of backlash determination and the complexity of multi-tooth contact deformation during the meshing process. In this paper, a new method to calculate the mesh stiffness is proposed including the effects of tooth profile modification and eccentricity error. The time-varying mesh parameters and load distribution of cycloid-pin gear pair are determined based on the unloaded tooth contact analysis (TCA) and the nonlinear Hertzian contact theory, allowing accurate calculations of the contact stiffness of single tooth pair and the torsional stiffness of multi-tooth pairs. A detailed parametric study is presented to demonstrate the influences of tooth profile modification, applied torque and eccentricity error on the torsional mesh stiffness, loaded transmission error, Hertzian contact stiffness and load sharing factor. This model can be applied to further study the lost motion and dynamic characteristics of cycloid speed reducer and assist the optimization of its precision, vibration and noise levels.展开更多
The meshing characteristic of asymmetric involute spur gear was studied, the equations of the geometric shape of the asymmetric gear for both sides were deduced, and the equations of contact ratio and the key points o...The meshing characteristic of asymmetric involute spur gear was studied, the equations of the geometric shape of the asymmetric gear for both sides were deduced, and the equations of contact ratio and the key points of contact were also obtained.Meanwhile, an involute slope modification method considering the effects of static transmission errors was proposed based on the meshing properties. The characteristic of the involute slope modification was analyzed by changing different modification parameters.The mesh stiffness and synthetic mesh stiffness of unmodified and modified asymmetric spur gears were investigated. Furthermore,the spectrums of synthetic mesh stiffness under different modification parameters were compared. Research results showed that the modification parameters influence the meshing performance of gear pairs, and the proposed modification method was feasible to improve the transmission performance of gear pairs with appropriate modification parameters.展开更多
基金supported by the National Natural Science Foundation-supported Program(51275052&51575055)
文摘Simulation study on the cylindrical gear meshing with the evolution gear meshing stiffness is being done for better understanding the dynamic characteristics of the kinematics.With consideration of damping,bearing clearance and gear backlash nonlinearity,the dynamic model is set up and computed in MATLAB.The analysis about the relationship between the kinematic responses and the meshing stiffness are carried out.And the results showed that as the gear mesh stiffness is changed from small to large,the performance of the system is changed from the harmonic stable periodic motion to with one times,two times,four times,ending chaos of the stability of the bifurcation.The research results would have theoretical guidance value for the fault diagnosis in engineering.
基金Project(2024A1515240020)supported by the Guangdong Basic and Applied Basic Research Foundation,China。
文摘The contact characteristics of the rough tooth surface during the meshing process are significantly affected by the lubrication state.The coupling effect of tooth surface roughness and lubrication on meshing characteristics of planetary gear is studied.An improved three-dimensional(3 D)anisotropic tooth surface roughness fractal model is proposed based on the experimental parameters.Considering asperity contact and elastohydrodynamic lubrication(EHL),the contact load and flexibility deformation of the tooth surface are derived,and the deformation compatibility equation of the 3 D loaded tooth contact analysis(3 D-LTCA)method is improved.The asperity of the tooth surface changes the system from EHL to mixed lubrication and reduces the stiffness of the oil film.Compared with the sun planet gear,the asperity has a greater effect on the meshing characteristics of the ring-planet gear.Compared with the proposed method,the comprehensive stiffness obtained by the traditional calculation method considering the lubrication effect is smaller,especially for the ring-planet gear.Compared with roughness,speed and viscosity,the meshing characteristics of planetary gears are most sensitive to torque.
基金Project(51175505)supported by the National Natural Science Foundation of China
文摘A nonlinear model of anti-backlash gear with time-varying friction and mesh stiffness was proposed for the further study on dynamic characteristics of anti-backlash gear. In order to improve the model precision, applied force analysis was completed in detail, and single or double tooth meshing states of two gear pairs at any timing were determined according to the meshing characteristic of anti-backlash gear. The influences of friction and variations of damping ratio on dynamic transmission error were analyzed finally by numerical calculation and the results show that anti-backlash gear can increase the composite mesh stiffness comparing with the mesh stiffness of the normal gear pair. At the pitch points where the frictions change their signs, additional impulsive effects are observed. The width of impulsive in the same value of center frequency is wider than that without friction, and the amplitude is lower. When gear pairs mesh in and out, damping can reduce the vibration and impact.
基金Project(51575062)supported by the National Natural Science Foundation of ChinaProject(51605049)supported by the National Natural Science Foundation for Young Scholar of ChinaProject(BA2015177)supported by the Science and Technology Achievements Transformation Program of Jiangsu Province of China
文摘Cycloid speed reducers are widely used in many industrial areas due to the advantages of compact size, high reduction ratio and high stiffness. However, currently, there are not many analytical models for the mesh stiffness calculation, which is a crucial parameter for the high-fidelity gear dynamic model. This is partially due to the difficulty of backlash determination and the complexity of multi-tooth contact deformation during the meshing process. In this paper, a new method to calculate the mesh stiffness is proposed including the effects of tooth profile modification and eccentricity error. The time-varying mesh parameters and load distribution of cycloid-pin gear pair are determined based on the unloaded tooth contact analysis (TCA) and the nonlinear Hertzian contact theory, allowing accurate calculations of the contact stiffness of single tooth pair and the torsional stiffness of multi-tooth pairs. A detailed parametric study is presented to demonstrate the influences of tooth profile modification, applied torque and eccentricity error on the torsional mesh stiffness, loaded transmission error, Hertzian contact stiffness and load sharing factor. This model can be applied to further study the lost motion and dynamic characteristics of cycloid speed reducer and assist the optimization of its precision, vibration and noise levels.
基金Project(51105287)supported by the National Natural Science Foundation of ChinaProject(2012BAA08003)supported by the Key Research and Development Project of New Product and New Technology of Hubei Province,ChinaProject(IRT13087)supported by the Progress for Innovative Research Team in University of Ministry of Education of China
文摘The meshing characteristic of asymmetric involute spur gear was studied, the equations of the geometric shape of the asymmetric gear for both sides were deduced, and the equations of contact ratio and the key points of contact were also obtained.Meanwhile, an involute slope modification method considering the effects of static transmission errors was proposed based on the meshing properties. The characteristic of the involute slope modification was analyzed by changing different modification parameters.The mesh stiffness and synthetic mesh stiffness of unmodified and modified asymmetric spur gears were investigated. Furthermore,the spectrums of synthetic mesh stiffness under different modification parameters were compared. Research results showed that the modification parameters influence the meshing performance of gear pairs, and the proposed modification method was feasible to improve the transmission performance of gear pairs with appropriate modification parameters.