期刊文献+
共找到137篇文章
< 1 2 7 >
每页显示 20 50 100
Optical memory behavior of MoS_(2) nanoflakes doped liquid crystals hybrid
1
作者 GONG Xiaohui ZHANG Hao +1 位作者 YANG Dongfang LIU Yang 《液晶与显示》 北大核心 2025年第5期665-673,共9页
The memory behavior in liquid crystals(LCs)that is characterized by low cost,large area,high speed,and high-density memory has evolved from a mere scientific curiosity to a technology that is being applied in a variet... The memory behavior in liquid crystals(LCs)that is characterized by low cost,large area,high speed,and high-density memory has evolved from a mere scientific curiosity to a technology that is being applied in a variety of commodities.In this study,we utilized molybdenum disulfide(MoS_(2))nanoflakes as the guest in a homotropic LCs host to modulate the overall memory effect of the hybrid.It was found that the MoS₂nanoflakes within the LCs host formed agglomerates,which in turn resulted in an accelerated response of the hybrids to the external electric field.However,this process also resulted in a slight decrease in the threshold voltage.Additionally,it was observed that MoS₂nanoflakes in a LCs host tend to align homeotropically under an external electric field,thereby accelerating the refreshment of the memory behavior.The incorporation of a mass fraction of 0.1%2μm MoS₂nanoflakes into the LCs host was found to significantly reduce the refreshing memory behavior in the hybrid to 94.0 s under an external voltage of 5 V.These findings illustrate the efficacy of regulating the rate of memory behavior for a variety of potential applications. 展开更多
关键词 optical memory behavior MoS_(2)nanoflake liquid crystal
在线阅读 下载PDF
多核处理器机群Memory层次化并行计算模型研究 被引量:17
2
作者 涂碧波 邹铭 +2 位作者 詹剑锋 赵晓芳 樊建平 《计算机学报》 EI CSCD 北大核心 2008年第11期1948-1955,共8页
多核处理器机群点对点通信同时具有memory纵向层次化特征和横向层次化的新特征.纵向层次化特征揭示了对不同大小和步长的消息进行点对点通信时消息通信中间件对其性能的影响;横向层次化的新特征由intra-CMPi、nter-CMP和inter-node消息... 多核处理器机群点对点通信同时具有memory纵向层次化特征和横向层次化的新特征.纵向层次化特征揭示了对不同大小和步长的消息进行点对点通信时消息通信中间件对其性能的影响;横向层次化的新特征由intra-CMPi、nter-CMP和inter-node消息通信性能的显著差异引起,目前缺少有效的分析模型.文中提出一种新的memory层次化并行计算模型,对多核处理器机群memory横向、纵向层次化特征进行了统一的抽象.在对多核处理器机群点对点通信和集合通信的开销进行模型分析和实际测试中,新模型的精确性优于现有的未引入memory横向层次化特征的模型. 展开更多
关键词 多核处理器机群 memory层次化 并行计算模型 MPI 多核意识
在线阅读 下载PDF
基于BO-LSTM的排露沟流域气象水文演变分析及径流预测模型建立 被引量:1
3
作者 康永德 陈佩 +3 位作者 许尔文 任小凤 敬文茂 张娟 《水利水电技术(中英文)》 北大核心 2025年第4期1-11,共11页
【目的】为揭示祁连山排露沟流域水文情势演变特征,并且为流域未来的水资源管理和优化配置提供依据和参考【方法】根据祁连山野外观测站2000—2019年实测径流和水文资料,采用线性趋势法、Pettitt检验、小波分析等方法,开展了降水与气温... 【目的】为揭示祁连山排露沟流域水文情势演变特征,并且为流域未来的水资源管理和优化配置提供依据和参考【方法】根据祁连山野外观测站2000—2019年实测径流和水文资料,采用线性趋势法、Pettitt检验、小波分析等方法,开展了降水与气温对径流量变化的影响,并建立了BO-LSTM排露沟流域径流预测模型。【结果】结果显示:(1)2000—2019年排露沟流域降水、气温和径流呈现两段式的上升趋势,分界点在2010年,降水和径流,第一阶段上升趋势均高于第二阶段,斜率依次为10.74、3.16;气温则相反,第二阶段高于第一阶段,斜率为0.11。并且降水、气温和径流的MK突变检验z值均大于0。(2)降水量在5—10月对径流量变化的贡献率较大;而气温在12月—次年4月对径流变化的贡献率大。(3)排露沟流域气温主要有3 a、14 a两个主周期,其中第一主周期为14 a;径流存在19 a、9 a和3 a三个主周期,其中第一主周期为19 a;降水主要存在4 a、11 a两个主周期,第一主周期为11 a。(4)BO-LSTM排露沟径流预测模型,精度R 2为0.63,均方根误差为14047 m 3,模型在径流量较小月份的预测精度大于径流量较大的月份。【结论】近20年来排露沟流域的降水、气温及径流均呈上升趋势;排露沟流域径流、降水及气温均存在明显的周期性;气温和降水是影响排露沟流域径流的重要因素;径流预测模型可以适用于排露沟流域。上述研究结果为祁连山水资源效应研究和内陆河流域水资源预测提供科学支撑。 展开更多
关键词 水文 水资源 径流演变 排露沟流域 径流预测 神经网络 LSTM(Long Short-Term memory)模型 贝叶斯优化算法
在线阅读 下载PDF
基于差分处理的EMD-LSTM短时空中交通流量预测
4
作者 周睿 邱爽 +2 位作者 孟双杰 李明 张强 《科学技术与工程》 北大核心 2025年第2期842-849,共8页
随着中国民航的飞速发展,终端区空中交通流量与日俱增,短时空中交通流量预测对于精准实施空中交通流量管理具有重要意义。为提高短时空中交通流量预测的准确性,提出了基于数据差分处理(data differential processing)的经验模态分解(emp... 随着中国民航的飞速发展,终端区空中交通流量与日俱增,短时空中交通流量预测对于精准实施空中交通流量管理具有重要意义。为提高短时空中交通流量预测的准确性,提出了基于数据差分处理(data differential processing)的经验模态分解(empirical mode decomposition,EMD)和长短期记忆(long short-term memory,LSTM)相结合的短时空中交通流量预测模型。首先,该模型对短时空中交通流量序列进行经验模态分解;其次,为了提高预测精度,运用数据差分对时间序列进行平稳化处理;最后,将平稳处理后的序列分别输入LSTM网络模型进行预测,经过数据重构,得到最终的短时流量预测值。利用郑州新郑国际机场数据进行了实验验证,结果表明,该模型预测精度和拟合程度的典型指标RSME、MAE、R^(2)分别为0.29%,0.08%、96.40%,相较于其他方法,预测精度大幅度提高,可以为短时空中交通流量预测提供有益参考。 展开更多
关键词 空中交通流量管理 短时空中交通流量预测 经验模态分解(empirical mode decomposition EMD) 数据差分处理(data differential processing) 长短期记忆(long short-term memory LSTM)
在线阅读 下载PDF
BIST技术及其在Memory中的应用
5
作者 汪滢 李晓宁 +1 位作者 王宏 马纪虎 《仪器仪表学报》 EI CAS CSCD 北大核心 2003年第z2期633-634,637,共3页
阐述内建自检测(BIST)技术的特点、结构和原理,并介绍其在Memory单元电路中的实现过程。
关键词 内建自检测 线性反馈移位寄存器 特征分析 memory
在线阅读 下载PDF
面向Flash Memory的高性能数据存储引擎的研究
6
作者 周晓云 覃雄派 徐钊 《工矿自动化》 2009年第6期56-61,共6页
传统的数据存储引擎对Flash Memory数据的修改是通过页内更新技术实现的,这将导致FlashMemory的性能下降及其磨损加剧。针对该问题,文章提出了一种面向Flash Memory的采用页外更新技术的多版本数据存储引擎MV4Flash。该数据存储引擎采... 传统的数据存储引擎对Flash Memory数据的修改是通过页内更新技术实现的,这将导致FlashMemory的性能下降及其磨损加剧。针对该问题,文章提出了一种面向Flash Memory的采用页外更新技术的多版本数据存储引擎MV4Flash。该数据存储引擎采用多版本存储和垃圾回收机制,所有数据的更新和修改都通过文件追加的方式进行,适应了Flash Memory先擦除后写入的特点,延长了设备寿命。采用NDBBench对该数据存储引擎进行测试的结果表明,MV4Flash与传统的InnoDB相比,事物处理性能有较大的提升,更适合于数据规模大、实时性要求高的应用系统。 展开更多
关键词 Flash memory 数据存储引擎 页内更新 页外更新 多版本 垃圾回收 NDB BENCH
在线阅读 下载PDF
低功耗高速擦写Flash Memory的研究
7
作者 吕家云 蒋全胜 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第5期634-636,共3页
随着嵌入式系统和移动通信的发展及集成电路特征尺寸的减小,对低功耗和更快的擦写速度提出了新的要求。文章从传统Flash Memory的结构缺陷上分析,为降低功耗及提高擦写速度方面提出了改进方法,并介绍了Flash Memory技术的发展趋势。
关键词 FLASH memory 低功耗 电子注入
在线阅读 下载PDF
Research on Short-Term Electric Load Forecasting Using IWOA CNN-BiLSTM-TPA Model
8
作者 MEI Tong-da SI Zhan-jun ZHANG Ying-xue 《印刷与数字媒体技术研究》 北大核心 2025年第1期179-187,共9页
Load forecasting is of great significance to the development of new power systems.With the advancement of smart grids,the integration and distribution of distributed renewable energy sources and power electronics devi... Load forecasting is of great significance to the development of new power systems.With the advancement of smart grids,the integration and distribution of distributed renewable energy sources and power electronics devices have made power load data increasingly complex and volatile.This places higher demands on the prediction and analysis of power loads.In order to improve the prediction accuracy of short-term power load,a CNN-BiLSTMTPA short-term power prediction model based on the Improved Whale Optimization Algorithm(IWOA)with mixed strategies was proposed.Firstly,the model combined the Convolutional Neural Network(CNN)with the Bidirectional Long Short-Term Memory Network(BiLSTM)to fully extract the spatio-temporal characteristics of the load data itself.Then,the Temporal Pattern Attention(TPA)mechanism was introduced into the CNN-BiLSTM model to automatically assign corresponding weights to the hidden states of the BiLSTM.This allowed the model to differentiate the importance of load sequences at different time intervals.At the same time,in order to solve the problem of the difficulties of selecting the parameters of the temporal model,and the poor global search ability of the whale algorithm,which is easy to fall into the local optimization,the whale algorithm(IWOA)was optimized by using the hybrid strategy of Tent chaos mapping and Levy flight strategy,so as to better search the parameters of the model.In this experiment,the real load data of a region in Zhejiang was taken as an example to analyze,and the prediction accuracy(R2)of the proposed method reached 98.83%.Compared with the prediction models such as BP,WOA-CNN-BiLSTM,SSA-CNN-BiLSTM,CNN-BiGRU-Attention,etc.,the experimental results showed that the model proposed in this study has a higher prediction accuracy. 展开更多
关键词 Whale Optimization Algorithm Convolutional Neural Network Long Short-Term memory Temporal Pattern Attention Power load forecasting
在线阅读 下载PDF
基于固定窗漂移检测的MSWI过程CO排放建模
9
作者 汤健 张润雨 +1 位作者 夏恒 乔俊飞 《北京工业大学学报》 北大核心 2025年第8期930-943,共14页
针对城市固废焚烧(municipal solid waste incineration, MSWI)过程中能够表征燃烧过程是否稳定的关键工业参数--一氧化碳(carbon monoxide, CO)排放浓度的动态时变特性,提出基于固定窗漂移检测的MSWI过程CO排放建模方法。首先,基于历... 针对城市固废焚烧(municipal solid waste incineration, MSWI)过程中能够表征燃烧过程是否稳定的关键工业参数--一氧化碳(carbon monoxide, CO)排放浓度的动态时变特性,提出基于固定窗漂移检测的MSWI过程CO排放建模方法。首先,基于历史数据集采用k-means算法获取典型样本池(typical sample pool, TSP),构建基于长短期记忆(long short-term memory, LSTM)神经网络的离线预测模型和基于核主成分分析(kernel principal component analysis, KPCA)的漂移指标计算模型。然后,针对每个在线采集样本,在预设定固定窗口未填满时基于历史LSTM神经网络模型进行在线预测,在预设定固定窗口填满时采用历史KPCA模型进行漂移检测。最后,利用指标霍特林统计量T2和平方预测误差(squared prediction error, SPE)判断是否产生漂移。若未产生漂移,则返回至新窗口期;若产生漂移,则合并历史数据和漂移数据以更新TSP、LSTM模型和KPCA模型。工业现场实际数据的仿真验证了所提方法的合理性和有效性。 展开更多
关键词 城市固废焚烧(municipal solid waste incineration MSWI) 一氧化碳(carbon monoxide CO)排放 概念漂移检测 典型样本池(typical sample pool TSP) 长短期记忆(long short-term memory LSTM)神经网络 核主成分分析(kernel principal component analysis KPCA)
在线阅读 下载PDF
Tomato Growth Height Prediction Method by Phenotypic Feature Extraction Using Multi-modal Data
10
作者 GONG Yu WANG Ling +3 位作者 ZHAO Rongqiang YOU Haibo ZHOU Mo LIU Jie 《智慧农业(中英文)》 2025年第1期97-110,共14页
[Objective]Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming.However,current prediction methods predominantly rely on empirical,mechanistic,or learning-base... [Objective]Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming.However,current prediction methods predominantly rely on empirical,mechanistic,or learning-based models that utilize either images data or environmental data.These methods fail to fully leverage multi-modal data to capture the diverse aspects of plant growth comprehensively.[Methods]To address this limitation,a two-stage phenotypic feature extraction(PFE)model based on deep learning algorithm of recurrent neural network(RNN)and long short-term memory(LSTM)was developed.The model integrated environment and plant information to provide a holistic understanding of the growth process,emploied phenotypic and temporal feature extractors to comprehensively capture both types of features,enabled a deeper understanding of the interaction between tomato plants and their environment,ultimately leading to highly accurate predictions of growth height.[Results and Discussions]The experimental results showed the model's ef‐fectiveness:When predicting the next two days based on the past five days,the PFE-based RNN and LSTM models achieved mean absolute percentage error(MAPE)of 0.81%and 0.40%,respectively,which were significantly lower than the 8.00%MAPE of the large language model(LLM)and 6.72%MAPE of the Transformer-based model.In longer-term predictions,the 10-day prediction for 4 days ahead and the 30-day prediction for 12 days ahead,the PFE-RNN model continued to outperform the other two baseline models,with MAPE of 2.66%and 14.05%,respectively.[Conclusions]The proposed method,which leverages phenotypic-temporal collaboration,shows great potential for intelligent,data-driven management of tomato cultivation,making it a promising approach for enhancing the efficiency and precision of smart tomato planting management. 展开更多
关键词 tomato growth prediction deep learning phenotypic feature extraction multi-modal data recurrent neural net‐work long short-term memory large language model
在线阅读 下载PDF
Intelligent modeling method for OV models in DoDAF2.0 based on knowledge graph
11
作者 ZHANG Yue JIANG Jiang +3 位作者 YANG Kewei WANG Xingliang XU Chi LI Minghao 《Journal of Systems Engineering and Electronics》 2025年第1期139-154,共16页
Architecture framework has become an effective method recently to describe the system of systems(SoS)architecture,such as the United States(US)Department of Defense Architecture Framework Version 2.0(DoDAF2.0).As a vi... Architecture framework has become an effective method recently to describe the system of systems(SoS)architecture,such as the United States(US)Department of Defense Architecture Framework Version 2.0(DoDAF2.0).As a viewpoint in DoDAF2.0,the operational viewpoint(OV)describes operational activities,nodes,and resource flows.The OV models are important for SoS architecture development.However,as the SoS complexity increases,constructing OV models with traditional methods exposes shortcomings,such as inefficient data collection and low modeling standards.Therefore,we propose an intelligent modeling method for five OV models,including operational resource flow OV-2,organizational relationships OV-4,operational activity hierarchy OV-5a,operational activities model OV-5b,and operational activity sequences OV-6c.The main idea of the method is to extract OV architecture data from text and generate interoperable OV models.First,we construct the OV meta model based on the DoDAF2.0 meta model(DM2).Second,OV architecture named entities is recognized from text based on the bidirectional long short-term memory and conditional random field(BiLSTM-CRF)model.And OV architecture relationships are collected with relationship extraction rules.Finally,we define the generation rules for OV models and develop an OV modeling tool.We use unmanned surface vehicles(USV)swarm target defense SoS architecture as a case to verify the feasibility and effectiveness of the intelligent modeling method. 展开更多
关键词 system of systems(SoS)architecture operational viewpoint(OV)model meta model bidirectional long short-term memory and conditional random field(BiLSTM-CRF) model generation systems modeling language
在线阅读 下载PDF
一种基于long short-term memory的唇语识别方法 被引量:4
12
作者 马宁 田国栋 周曦 《中国科学院大学学报(中英文)》 CSCD 北大核心 2018年第1期109-117,共9页
唇动视觉信息是说话内容的重要载体。受嘴唇外观、背景信息和说话习惯等影响,即使说话者说相同的内容,唇动视觉信息也会相差很大。为解决唇语视觉信息多样性的问题,提出一种基于long short-term memory(LSTM)的新的唇语识别方法。以往... 唇动视觉信息是说话内容的重要载体。受嘴唇外观、背景信息和说话习惯等影响,即使说话者说相同的内容,唇动视觉信息也会相差很大。为解决唇语视觉信息多样性的问题,提出一种基于long short-term memory(LSTM)的新的唇语识别方法。以往大多数的方法从嘴唇外表信息入手。本方法用嘴唇关键点坐标描述嘴唇形变信息作为唇语视频的特征,它具有类内一致性和类间区分性的特点。然后利用LSTM对特征进行时序编码,它能学习具有区分性和泛化性的空间-时序特征。在公开的唇语数据集GRID、MIRACL-VC和Oulu VS上对本方法做了针对分割的单词或短语的说话者独立的唇语识别评估。在GRID和MIRACL-VC上,本方法的准确率比传统方法至少高30%;在Oulu VS上,本方法的准确率接近于最优结果。以上实验结果表明,本文提出的基于LSTM的唇语识别方法有效地解决了唇语视觉信息多样性的问题。 展开更多
关键词 唇语识别 LONG SHORT-TERM memory 计算机视觉
在线阅读 下载PDF
一种能有效降低Memory BIST功耗的方法 被引量:1
13
作者 袁秋香 方粮 +3 位作者 李少青 刘蓬侠 余金山 徐长明 《计算机研究与发展》 EI CSCD 北大核心 2012年第S1期94-98,共5页
随着系统芯片(SoC)上存储器比重的日趋增加和Memory BIST(memory built-inself-test)的广泛应用,对较低测试功耗的嵌入式Memory BIST的设计要求越来越高,因为测试功耗一般为系统正常工作时的两倍多,而过高的功耗会烧毁电路和降低芯片成... 随着系统芯片(SoC)上存储器比重的日趋增加和Memory BIST(memory built-inself-test)的广泛应用,对较低测试功耗的嵌入式Memory BIST的设计要求越来越高,因为测试功耗一般为系统正常工作时的两倍多,而过高的功耗会烧毁电路和降低芯片成品率.通过采用按时钟域划分存储器组和串并结合的方法来降低Memory BIST的测试功耗.实验仿真结果表明,用该方法所得的最大功耗只有传统方法的1/14,可见该方法能有效降低测试时的能量损耗. 展开更多
关键词 memory BIST 时钟域 串并结合 最大功耗
在线阅读 下载PDF
Hybrid artificial bee colony algorithm with variable neighborhood search and memory mechanism 被引量:59
14
作者 FAN Chengli FU Qiang +1 位作者 LONG Guangzheng XING Qinghua 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第2期405-414,共10页
Artificial bee colony(ABC) is one of the most popular swarm intelligence optimization algorithms which have been widely used in numerical optimization and engineering applications. However, there are still deficiencie... Artificial bee colony(ABC) is one of the most popular swarm intelligence optimization algorithms which have been widely used in numerical optimization and engineering applications. However, there are still deficiencies in ABC regarding its local search ability and global search efficiency. Aiming at these deficiencies,an ABC variant named hybrid ABC(HABC) algorithm is proposed.Firstly, the variable neighborhood search factor is added to the solution search equation, which can enhance the local search ability and increase the population diversity. Secondly, inspired by the neuroscience investigation of real honeybees, the memory mechanism is put forward, which assumes the artificial bees can remember their past successful experiences and further guide the subsequent foraging behavior. The proposed memory mechanism is used to improve the global search efficiency. Finally, the results of comparison on a set of ten benchmark functions demonstrate the superiority of HABC. 展开更多
关键词 artificial bee colony(ABC) hybrid artificial bee colony(HABC) variable neighborhood search factor memory mechanism
在线阅读 下载PDF
Design of a memory polynomial predistorter for wideband envelope tracking amplifiers 被引量:5
15
作者 Jing Zhang Songbai He Lu Gan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第2期193-199,共7页
Efficiency and linearity of the microwave power amplifier are critical elements for mobile communication systems. A memory polynomial baseband predistorter based on an indirect learning architecture is presented for i... Efficiency and linearity of the microwave power amplifier are critical elements for mobile communication systems. A memory polynomial baseband predistorter based on an indirect learning architecture is presented for improving the linearity of an envelope tracing (ET) amplifier with application to a wireless transmitter. To deal with large peak-to-average ratio (PAR) problem, a clipping procedure for the input signal is employed. Then the system performance is verified by simulation results. For a single carrier wideband code division multiple access (WCDMA) signal of 16-quadrature amplitude modulation (16-QAM), about 2% improvement of the error vector magnitude (EVM) is achieved at an average output power of 45.5 dBm and gain of 10.6 dB, with adjacent channel leakage ratio (ACLR) of -64.55 dBc at offset frequency of 5 MHz. Moreover, a three-carrier WCDMA signal and a third-generation (3G) long term evolution (LTE) signal are used as test signals to demonstrate the performance of the proposed linearization scheme under different bandwidth signals. 展开更多
关键词 envelope tracking memory polynomial predistorter indirect learning architecture power amplifier memory effects.
在线阅读 下载PDF
Constitutive behavior of Ni-Ti shape memory alloy under hot compression 被引量:5
16
作者 江树勇 张艳秋 +2 位作者 赵亚楠 唐明 易文林 《Journal of Central South University》 SCIE EI CAS 2013年第1期24-29,共6页
Constitutive behavior of nickel-titanium shape memory alloy (Ni-Ti SMA) under hot deformation was investigated by means of the compression tests and the linear fitting method. Based on the true stres-strain curves o... Constitutive behavior of nickel-titanium shape memory alloy (Ni-Ti SMA) under hot deformation was investigated by means of the compression tests and the linear fitting method. Based on the true stres-strain curves of Ni-Ti SMA under compression at the strain rates of 0.001-1 s land at the temperatures ranging from 600 to 1 000 ℃, the constitutive equation of Ni-Ti SMA with respect to the Zener-Hollomon parameter was established according to the high stress level and the low stress level at various temperatures so as to more accurately describe the deformation behavior of Ni-Ti SMA during hot working. Dynamic recovery and dynamic recrystallization of Ni-Ti SMA occur under hot compression, which lays the theoretical foundation for understanding the constitutive behavior of Ni-Ti SMA. 展开更多
关键词 Ni-Ti alloy shape memory alloy constitutive behavior microstructural evolution hot deformation
在线阅读 下载PDF
Metal magnetic memory field characterization at early fatigue damage based on modified Jiles-Atherton model 被引量:6
17
作者 徐明秀 徐敏强 +1 位作者 李建伟 邢海燕 《Journal of Central South University》 SCIE EI CAS 2012年第6期1488-1496,共9页
In order to propel the development of metal magnetic memory (MMM) technique in fatigue damage detection, the Jiles-Atherton model (J-A model) was modified to describe MMM mechanism in elastic stress stage. A serie... In order to propel the development of metal magnetic memory (MMM) technique in fatigue damage detection, the Jiles-Atherton model (J-A model) was modified to describe MMM mechanism in elastic stress stage. A series of rotating bending fatigue experiments were conducted to study the stress-magnetization relationship and verify the correctness of modified J-A model. In MMM detection, the magnetization of material irreversibly approaches to the local equilibrium state Mo instead of global equilibrium state M^n under cyclic stress, and the M0-a curves are loops around the Mar,-a curve. The modified J-A model is constructed by replacing M~ in J-A model with M0, and it can describe the magnetomechanical effect well at low external magnetic field. In the rotating bending fatigue experiments, the MMM field distribution in normal direction around cylinder specimen is similar to the stress distribution, and the calculation result of model coincides with experiment result after some necessary modifications. The MMM field variation with time at a certain point in fatigue process is divided into three stages with the variation of stable stress-stain hysteresis loop, and the calculation results of model can explain not only the three stages of MMM field changes, but also the different change laws when the applied magnetic field and initial magnetic field are different. The MMM field distribution in normal direction along specimen axis reflects stress concentration effect at artificial defect, and the magnetic signal fluctuates around the defect at late fatigue stage. The calculation results coincide with the initial MMM principle and can explain signal fluctuates around the defect. The modified J-A model can explain experiment results well, and it is fit for MMM field characterization. 展开更多
关键词 metal magnetic memory Jiles-Atherton model rotating bending fatigue magnetomechanical effect local equilibriumstate
在线阅读 下载PDF
Passive smart self-repairing concrete beams by using shape memory alloy wires and fibers containing adhesives 被引量:6
18
作者 匡亚川 欧进萍 《Journal of Central South University of Technology》 EI 2008年第3期411-417,共7页
An innovative approach to increase structural survivability of concrete and maintain structural durability of concrete was developed in case of earthquakes and typhoons. This approach takes advantage of the superelast... An innovative approach to increase structural survivability of concrete and maintain structural durability of concrete was developed in case of earthquakes and typhoons. This approach takes advantage of the superelastic effect of shape memory alloy(SMA) and the cohering characteristic of repairing adhesive. These SMA wires and brittle fibers containing adhesives were embedded into concrete beams during concrete casting to form smart reinforced concrete beams. The self-repairing capacity of smart concrete beams was investigated by three-point bending tests. The experimental results show that SMA wires add self-restoration capacity,the concrete beams recover almost completely after incurring an extremely large deflection and the cracks are closed almost completely by the recovery forces of SMA wires. The number or areas of SMA wires has no influence on the tendency of deformation during loading and the tendency of reversion by the superelasticity. The adhesives released from the broken-open fibers fill voids and cracks. The repaired damage enables continued function and prevents further degradation. 展开更多
关键词 self-repairing concrete shape memory alloy SUPERELASTICITY repairing fiber repairing adhesive
在线阅读 下载PDF
Fatigue damage evaluation by metal magnetic memory testing 被引量:5
19
作者 王慧鹏 董丽虹 +1 位作者 董世运 徐滨士 《Journal of Central South University》 SCIE EI CAS 2014年第1期65-70,共6页
Tension-compression fatigue test was performed on 0.45% C steel specimens.Normal and tangential components of magnetic memory testing signals,Hp(y) and Hp(x) signals,with their characteristics,K of Hp(y) and Hp(x)M of... Tension-compression fatigue test was performed on 0.45% C steel specimens.Normal and tangential components of magnetic memory testing signals,Hp(y) and Hp(x) signals,with their characteristics,K of Hp(y) and Hp(x)M of Hp(x),throughout the fatigue process were presented and analyzed.Abnormal peaks of Hp(y) and peak of Hp(x) reversed after loading; Hp(y) curves rotated clockwise and Hp(x) curves elevated significantly with the increase of fatigue cycle number at the first a few fatigue cycles,both Hp(y) and Hp(x) curves were stable after that,the amplitude of abnormal peaks of Hp(y) and peak value of Hp(x) increased more quickly after fatigue crack initiation.Abnormal peaks of Hp(y) and peak of Hp(x) at the notch reversed again after failure.The characteristics were found to exhibit consistent tendency in the whole fatigue life and behave differently in different stages of fatigue.In initial and crack developing stages,the characteristics increased significantly due to dislocations increase and crack propagation,respectively.In stable stage,the characteristics remained constant as a result of dislocation blocking,K value ranged from 20 to 30 A/(m·mm)-1,and Hp(x)M ranged from 270 to 300 A/m under the test parameters in this work.After failure,both abnormal peaks of Hp(y) and peak of Hp(x) reversed,K value was 133 A/(m·mm)-1 and Hp(x)M was-640 A/m.The results indicate that the characteristics of Hp(y) and Hp(x) signals were related to the accumulation of fatigue,so it is feasible and applicable to monitor fatigue damage of ferromagnetic components using metal magnetic memory testing(MMMT). 展开更多
关键词 metal magnetic memory testing MMMT signal tension-compression fatigue test feature extraction
在线阅读 下载PDF
Metal magnetic memory testing for early damage assessment in ferromagnetic materials 被引量:3
20
作者 董丽虹 徐滨士 +5 位作者 董世运 陈群志 王愈涯 张蕾 王丹 尹大伟 《Journal of Central South University》 SCIE EI CAS 2005年第S2期102-106,共5页
In order to investigate the physical mechanism of metal magnetic memory testing, both the influences of earth magnetic field and applied stress on magnetic domain structure were discussed. Static tension and fatigue t... In order to investigate the physical mechanism of metal magnetic memory testing, both the influences of earth magnetic field and applied stress on magnetic domain structure were discussed. Static tension and fatigue tests for low carbon steel plate specimens were carried out on hydraulic servo testing machine of MTS810 type and magnetic signals were measured during the processes by the type of EMS-2003 instrument. The results indicate that the initial magnetic signals of specimens are different before loading. The magnetic signals curves are transformed from initial random to regular pattern due to the effect of two types of loads. However, the shape and distribution of magnetic signal curves in the elastic region are different from that of plastic region in tension test. While in fatigue test those magnetic signals curves corresponding to different cycles are similar. The H_p(y) value of magnetic signals on the fracture zone increases dramatically at the breaking transient time and positive-negative magnetic poles occur on the two parts of fracture zone. 展开更多
关键词 metal MAGNETIC memory testing FERROMAGNETIC materials MAGNETIC LEAKAGE SIGNALS EARLY damage
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部