In this study,we examine the problem of sliced inverse regression(SIR),a widely used method for sufficient dimension reduction(SDR).It was designed to find reduced-dimensional versions of multivariate predictors by re...In this study,we examine the problem of sliced inverse regression(SIR),a widely used method for sufficient dimension reduction(SDR).It was designed to find reduced-dimensional versions of multivariate predictors by replacing them with a minimally adequate collection of their linear combinations without loss of information.Recently,regularization methods have been proposed in SIR to incorporate a sparse structure of predictors for better interpretability.However,existing methods consider convex relaxation to bypass the sparsity constraint,which may not lead to the best subset,and particularly tends to include irrelevant variables when predictors are correlated.In this study,we approach sparse SIR as a nonconvex optimization problem and directly tackle the sparsity constraint by establishing the optimal conditions and iteratively solving them by means of the splicing technique.Without employing convex relaxation on the sparsity constraint and the orthogonal constraint,our algorithm exhibits superior empirical merits,as evidenced by extensive numerical studies.Computationally,our algorithm is much faster than the relaxed approach for the natural sparse SIR estimator.Statistically,our algorithm surpasses existing methods in terms of accuracy for central subspace estimation and best subset selection and sustains high performance even with correlated predictors.展开更多
In this paper,a feature selection method for determining input parameters in antenna modeling is proposed.In antenna modeling,the input feature of artificial neural network(ANN)is geometric parameters.The selection cr...In this paper,a feature selection method for determining input parameters in antenna modeling is proposed.In antenna modeling,the input feature of artificial neural network(ANN)is geometric parameters.The selection criteria contain correlation and sensitivity between the geometric parameter and the electromagnetic(EM)response.Maximal information coefficient(MIC),an exploratory data mining tool,is introduced to evaluate both linear and nonlinear correlations.The EM response range is utilized to evaluate the sensitivity.The wide response range corresponding to varying values of a parameter implies the parameter is highly sensitive and the narrow response range suggests the parameter is insensitive.Only the parameter which is highly correlative and sensitive is selected as the input of ANN,and the sampling space of the model is highly reduced.The modeling of a wideband and circularly polarized antenna is studied as an example to verify the effectiveness of the proposed method.The number of input parameters decreases from8 to 4.The testing errors of|S_(11)|and axis ratio are reduced by8.74%and 8.95%,respectively,compared with the ANN with no feature selection.展开更多
The support vector machine (SVM) is a novel machine learning method, which has the ability to approximate nonlinear functions with arbitrary accuracy. Setting parameters well is very crucial for SVM learning results...The support vector machine (SVM) is a novel machine learning method, which has the ability to approximate nonlinear functions with arbitrary accuracy. Setting parameters well is very crucial for SVM learning results and generalization ability, and now there is no systematic, general method for parameter selection. In this article, the SVM parameter selection for function approximation is regarded as a compound optimization problem and a mutative scale chaos optimization algorithm is employed to search for optimal paraxneter values. The chaos optimization algorithm is an effective way for global optimal and the mutative scale chaos algorithm could improve the search efficiency and accuracy. Several simulation examples show the sensitivity of the SVM parameters and demonstrate the superiority of this proposed method for nonlinear function approximation.展开更多
An adaptive approach to select analysis window param- eters for linear frequency modulated (LFM) signals is proposed to obtain the optimal 3 dB signal-to-noise ratio (SNR) in the short- time Fourier transform (S...An adaptive approach to select analysis window param- eters for linear frequency modulated (LFM) signals is proposed to obtain the optimal 3 dB signal-to-noise ratio (SNR) in the short- time Fourier transform (STFT) domain. After analyzing the instan- taneous frequency and instantaneous bandwidth to deduce the relation between the window length and deviation of the Gaus- sian window, high-order statistics is used to select the appropriate window length for STFT and get the optimal SNR with the right time-frequency resolution according to the signal characteristic under a fixed sampling rate. Computer simulations have verified the effectiveness of the new method.展开更多
An improved social force model based on exit selection is proposed to simulate pedestrians' microscopic behaviors in subway station. The modification lies in considering three factors of spatial distance, occupant...An improved social force model based on exit selection is proposed to simulate pedestrians' microscopic behaviors in subway station. The modification lies in considering three factors of spatial distance, occupant density and exit width. In addition, the problem of pedestrians selecting exit frequently is solved as follows: not changing to other exits in the affected area of one exit, using the probability of remaining preceding exit and invoking function of exit selection after several simulation steps. Pedestrians in subway station have some special characteristics, such as explicit destinations, different familiarities with subway station. Finally, Beijing Zoo Subway Station is taken as an example and the feasibility of the model results is verified through the comparison of the actual data and simulation data. The simulation results show that the improved model can depict the microscopic behaviors of pedestrians in subway station.展开更多
Suppliers' selection in supply chain management (SCM) has attracted considerable research interests in recent years. Recent literatures show that neural networks achieve better performance than traditional statisti...Suppliers' selection in supply chain management (SCM) has attracted considerable research interests in recent years. Recent literatures show that neural networks achieve better performance than traditional statistical methods. However, neural networks have inherent drawbacks, such as local optimization solution, lack generalization, and uncontrolled convergence. A relatively new machine learning technique, support vector machine (SVM), which overcomes the drawbacks of neural networks, is introduced to provide a model with better explanatory power to select ideal supplier partners. Meanwhile, in practice, the suppliers' samples are very insufficient. SVMs are adaptive to deal with small samples' training and testing. The prediction accuracies for BPNN and SVM methods are compared to choose the appreciating suppliers. The actual examples illustrate that SVM methods are superior to BPNN.展开更多
Since most parameter control methods are based on prior knowledge, it is difficult for them to solve various problems.In this paper, an adaptive selection method used for operators and parameters is proposed and named...Since most parameter control methods are based on prior knowledge, it is difficult for them to solve various problems.In this paper, an adaptive selection method used for operators and parameters is proposed and named double adaptive selection(DAS) strategy. Firstly, some experiments about the operator search ability are given and the performance of operators with different donate vectors is analyzed. Then, DAS is presented by inducing the upper confidence bound strategy, which chooses suitable combination of operators and donates sets to optimize solutions without prior knowledge. Finally, the DAS is used under the framework of the multi-objective evolutionary algorithm based on decomposition, and the multi-objective evolutionary algorithm based on DAS(MOEA/D-DAS) is compared to state-of-the-art MOEAs. Simulation results validate that the MOEA/D-DAS could select the suitable combination of operators and donate sets to optimize problems and the proposed algorithm has better convergence and distribution.展开更多
A new antenna selection algorithm for multiple input multiple output (MIMO) wireless systems is proposed. The modified Tanimoto coefficient is used to compare the similarity of the rows/columns of the channel matrix...A new antenna selection algorithm for multiple input multiple output (MIMO) wireless systems is proposed. The modified Tanimoto coefficient is used to compare the similarity of the rows/columns of the channel matrix. Based on the calculated similarity, the proposed algorithm chooses the antenna subset, which has the maximum product of dissimilarity and Frobenius norm. The proposed algorithm requires low computational complexity as to the optimal selection but with comparative outage capacity and average signal to noise ratio (SNR) performance. It can improve both the outage capacity and the average SNR as compared to random selection. The simulation results are shown to validate our algorithm.展开更多
Sensor platforms with active sensing equipment such as radar may betray their existence, by emitting energy that will be intercepted by enemy surveillance sensors. The radar with less emission has more excellent perfo...Sensor platforms with active sensing equipment such as radar may betray their existence, by emitting energy that will be intercepted by enemy surveillance sensors. The radar with less emission has more excellent performance of the low probability of intercept(LPI). In order to reduce the emission times of the radar, a novel sensor selection strategy based on an improved interacting multiple model particle filter(IMMPF) tracking method is presented. Firstly the IMMPF tracking method is improved by increasing the weight of the particle which is close to the system state and updating the model probability of every particle. Then a sensor selection approach for LPI takes use of both the target's maneuverability and the state's uncertainty to decide the radar's radiation time. The radar will work only when the target's maneuverability and the state's uncertainty exceed the control capability of the passive sensors. Tracking accuracy and LPI performance are demonstrated in the Monte Carlo simulations.展开更多
Monitoring high-dimensional multistage processes becomes crucial to ensure the quality of the final product in modern industry environments. Few statistical process monitoring(SPC) approaches for monitoring and contro...Monitoring high-dimensional multistage processes becomes crucial to ensure the quality of the final product in modern industry environments. Few statistical process monitoring(SPC) approaches for monitoring and controlling quality in highdimensional multistage processes are studied. We propose a deviance residual-based multivariate exponentially weighted moving average(MEWMA) control chart with a variable selection procedure. We demonstrate that it outperforms the existing multivariate SPC charts in terms of out-of-control average run length(ARL) for the detection of process mean shift.展开更多
A theoretical method for selecting strip rolling mill type that considered shape control ability was established using the figure alteration range that was worked by the alteration track of vector expressing strip'...A theoretical method for selecting strip rolling mill type that considered shape control ability was established using the figure alteration range that was worked by the alteration track of vector expressing strip's cross section (crown) to express the shape control ability of rolling mill. With the mathematical models and simulation software that were developed by the authors' own models, four types of mills were aimed, including HCM (6-high middle rolls shift type HC (high crown) -mill), HCMW (6-high middle rolls and work rolls shift type HC-mill), UCM (6-high middle rolls shift type HC-mill with middle roll bender) and UCMW (6-high middle rolls and work rolls shift type HC-mill with middle roll bender), and the shape and crown control ability of every mill type was analyzed and compared. An appropriate arrangement mode of tandem mill was brought forward. The results show that UCMW mill is a perfect choice for controlling shape and crown, and the area of control characteristics curve of UCMW (or UCM) is twice than that of HCM, but UCM mill is also a good choice for its simple frame. In other word, the shape and crown controlling ability of UCMW mill is better than that of UCM mill, but the frame of UCM mill is simpler than that of UCMW mill. As for the final type of mill, should be synthetically decided by thinking over fund and equipment technology.展开更多
The test selection and optimization (TSO) can improve the abilities of fault diagnosis, prognosis and health-state evalua- tion for prognostics and health management (PHM) systems. Traditionally, TSO mainly focuse...The test selection and optimization (TSO) can improve the abilities of fault diagnosis, prognosis and health-state evalua- tion for prognostics and health management (PHM) systems. Traditionally, TSO mainly focuses on fault detection and isolation, but they cannot provide an effective guide for the design for testability (DFT) to improve the PHM performance level. To solve the problem, a model of TSO for PHM systems is proposed. Firstly, through integrating the characteristics of fault severity and propa- gation time, and analyzing the test timing and sensitivity, a testability model based on failure evolution mechanism model (FEMM) for PHM systems is built up. This model describes the fault evolution- test dependency using the fault-symptom parameter matrix and symptom parameter-test matrix. Secondly, a novel method of in- herent testability analysis for PHM systems is developed based on the above information. Having completed the analysis, a TSO model, whose objective is to maximize fault trackability and mini- mize the test cost, is proposed through inherent testability analysis results, and an adaptive simulated annealing genetic algorithm (ASAGA) is introduced to solve the TSO problem. Finally, a case of a centrifugal pump system is used to verify the feasibility and effectiveness of the proposed models and methods. The results show that the proposed technology is important for PHM systems to select and optimize the test set in order to improve their performance level.展开更多
A joint power control and relay selection scheme is considered for a cooperative and cognitive radio system where a secondary network shares spectrum with the primary network. In the secondary network, two secondary u...A joint power control and relay selection scheme is considered for a cooperative and cognitive radio system where a secondary network shares spectrum with the primary network. In the secondary network, two secondary users (SUs) communicate with each other via an assist relay. The main point is to provide the best system performance to SUs while maintaining the interference power at primary user (PU) under a certain level. Using convex optimization, a closed-form solution is obtained when optimizing the power allocation among the two nodes and relay. Based on this result, a joint power control and relay selection scheme with fewer variable dimensions is proposed to maximize the achievable rate of the secondary system. Simulation results demonstrate that the sum rate of the cognitive two-way relay network increases compared with a random relay selection and fixed power allocation.展开更多
Real-time hand gesture recognition technology significantly improves the user's experience for virtual reality/augmented reality(VR/AR) applications, which relies on the identification of the orientation of the ha...Real-time hand gesture recognition technology significantly improves the user's experience for virtual reality/augmented reality(VR/AR) applications, which relies on the identification of the orientation of the hand in captured images or videos. A new three-stage pipeline approach for fast and accurate hand segmentation for the hand from a single depth image is proposed. Firstly, a depth frame is segmented into several regions by histogrambased threshold selection algorithm and by tracing the exterior boundaries of objects after thresholding. Secondly, each segmentation proposal is evaluated by a three-layers shallow convolutional neural network(CNN) to determine whether or not the boundary is associated with the hand. Finally, all hand components are merged as the hand segmentation result. Compared with algorithms based on random decision forest(RDF), the experimental results demonstrate that the approach achieves better performance with high-accuracy(88.34% mean intersection over union, mIoU) and a shorter processing time(≤8 ms).展开更多
Neuro-fuzzy(NF)networks are adaptive fuzzy inference systems(FIS)and have been applied to feature selection by some researchers.However,their rule number will grow exponentially as the data dimension increases.On the ...Neuro-fuzzy(NF)networks are adaptive fuzzy inference systems(FIS)and have been applied to feature selection by some researchers.However,their rule number will grow exponentially as the data dimension increases.On the other hand,feature selection algorithms with artificial neural networks(ANN)usually require normalization of input data,which will probably change some characteristics of original data that are important for classification.To overcome the problems mentioned above,this paper combines the fuzzification layer of the neuro-fuzzy system with the multi-layer perceptron(MLP)to form a new artificial neural network.Furthermore,fuzzification strategy and feature measurement based on membership space are proposed for feature selection. Finally,experiments with both natural and artificial data are carried out to compare with other methods,and the results approve the validity of the algorithm.展开更多
Maximal-ratio transmission systems with transmit antenna selection is investigated. According to the order statistics of channel fiat fading coefficients, the closed-form expressions axe derived for average SNR with a...Maximal-ratio transmission systems with transmit antenna selection is investigated. According to the order statistics of channel fiat fading coefficients, the closed-form expressions axe derived for average SNR with any amount of RF chains and average BER with two RF chains, respectively. The algorithm for calculating the minimum of total transmit antennas is presented in terms of reduced RF chains. The method of quantizing transmit precoders is employed in this study to decrease feedback information. Simulation results demonstrate the superiority of the proposed systems under full and quantized transmit precoders. The SNR of the proposed systems has been less degraded by the quantization of transmit precoder than that of pure maximal-ratio transmission systems.展开更多
Supplier selection is a multi-objective decision problem, which must be considered many objectives, some objectives are qualitative, and others are quantitative. Meanwhile, manufacturer has preference for different su...Supplier selection is a multi-objective decision problem, which must be considered many objectives, some objectives are qualitative, and others are quantitative. Meanwhile, manufacturer has preference for different suppliers. In this paper, a new multi-objective decision model with preference information of supplier is established. A practical example of supplier selection problem utilizing this model is studied. The result demonstrates the feasibility and effectiveness of the methods proposed in the paper.展开更多
A quality of service (QoS) or constraint-based routing selection needs to find a path subject to multiple constraints through a network. The problem of finding such a path is known as the multi-constrained path (MC...A quality of service (QoS) or constraint-based routing selection needs to find a path subject to multiple constraints through a network. The problem of finding such a path is known as the multi-constrained path (MCP) problem, and has been proven to be NP-complete that cannot be exactly solved in a polynomial time. The NPC problem is converted into a multiobjective optimization problem with constraints to be solved with a genetic algorithm. Based on the Pareto optimum, a constrained routing computation method is proposed to generate a set of nondominated optimal routes with the genetic algorithm mechanism. The convergence and time complexity of the novel algorithm is analyzed. Experimental results show that multiobjective evolution is highly responsive and competent for the Pareto optimum-based route selection. When this method is applied to a MPLS and metropolitan-area network, it will be capable of optimizing the transmission performance.展开更多
Equipment selection is an essential work in the research and development planning of equipment.The scientific and rational development of weapons equipment portfolios is of considerable significance to the optimizatio...Equipment selection is an essential work in the research and development planning of equipment.The scientific and rational development of weapons equipment portfolios is of considerable significance to the optimization of equipment architecture design,the adequate resources allocation,and the joint combat performance.From the system view,this paper proposes a method of weapons equipment portfolios selection(WEPS)based on the contribution rate of weapon systems,providing a new idea for weapon equipment portfolio selection.Firstly,we analyze the WEPS problem and the concept of the contribution rate under the systems background.Secondly,we propose a combat network modeling method for weapon equipment systems based on the function chain.Thirdly,we propose a WEPS method based on the contribution rate,fully considering the correlation relationships between potential weapons and the old weapon systems by the combat network model,under the limitation of capability demands and budget resources,with the objective to maximally increasing the combat ability of weapon systems.Finally,we make a case study with a specific WEPS problem where the whole calculation processes and results are analyzed and exhibited to verify the feasibility and effectiveness of the proposed method model.展开更多
An antenna adjustment strategy is developed for the target tracking problem in the collocated multiple-input multipleoutput(MIMO)radar.The basic technique of this strategy is to optimally allocate antennas by the prio...An antenna adjustment strategy is developed for the target tracking problem in the collocated multiple-input multipleoutput(MIMO)radar.The basic technique of this strategy is to optimally allocate antennas by the prior information in the tracking recursive period,with the objective of enhancing the worst-case estimate precision of multiple targets.On account of the posterior Cramer-Rao lower bound(PCRLB)offering a quantitative measure for target tracking accuracy,the PCRLB of joint direction-of-arrival(DOA)and Doppler is derived and utilized as the optimization criterion.It is shown that the dynamic antenna selection problem is NP-hard,and an efficient technique which combines convex relaxation with local search is put forward as the solution.Simulation results demonstrate the outperformance of the proposed strategy to the fixed antenna configuration and heuristic search algorithm.Moreover,it is able to offer close-to performance of the exhaustive search method.展开更多
文摘In this study,we examine the problem of sliced inverse regression(SIR),a widely used method for sufficient dimension reduction(SDR).It was designed to find reduced-dimensional versions of multivariate predictors by replacing them with a minimally adequate collection of their linear combinations without loss of information.Recently,regularization methods have been proposed in SIR to incorporate a sparse structure of predictors for better interpretability.However,existing methods consider convex relaxation to bypass the sparsity constraint,which may not lead to the best subset,and particularly tends to include irrelevant variables when predictors are correlated.In this study,we approach sparse SIR as a nonconvex optimization problem and directly tackle the sparsity constraint by establishing the optimal conditions and iteratively solving them by means of the splicing technique.Without employing convex relaxation on the sparsity constraint and the orthogonal constraint,our algorithm exhibits superior empirical merits,as evidenced by extensive numerical studies.Computationally,our algorithm is much faster than the relaxed approach for the natural sparse SIR estimator.Statistically,our algorithm surpasses existing methods in terms of accuracy for central subspace estimation and best subset selection and sustains high performance even with correlated predictors.
基金National Natural Science Foundation of China(62161048)Sichuan Science and Technology Program(2022NSFSC0547,2022ZYD0109)。
文摘In this paper,a feature selection method for determining input parameters in antenna modeling is proposed.In antenna modeling,the input feature of artificial neural network(ANN)is geometric parameters.The selection criteria contain correlation and sensitivity between the geometric parameter and the electromagnetic(EM)response.Maximal information coefficient(MIC),an exploratory data mining tool,is introduced to evaluate both linear and nonlinear correlations.The EM response range is utilized to evaluate the sensitivity.The wide response range corresponding to varying values of a parameter implies the parameter is highly sensitive and the narrow response range suggests the parameter is insensitive.Only the parameter which is highly correlative and sensitive is selected as the input of ANN,and the sampling space of the model is highly reduced.The modeling of a wideband and circularly polarized antenna is studied as an example to verify the effectiveness of the proposed method.The number of input parameters decreases from8 to 4.The testing errors of|S_(11)|and axis ratio are reduced by8.74%and 8.95%,respectively,compared with the ANN with no feature selection.
基金the National Nature Science Foundation of China (60775047, 60402024)
文摘The support vector machine (SVM) is a novel machine learning method, which has the ability to approximate nonlinear functions with arbitrary accuracy. Setting parameters well is very crucial for SVM learning results and generalization ability, and now there is no systematic, general method for parameter selection. In this article, the SVM parameter selection for function approximation is regarded as a compound optimization problem and a mutative scale chaos optimization algorithm is employed to search for optimal paraxneter values. The chaos optimization algorithm is an effective way for global optimal and the mutative scale chaos algorithm could improve the search efficiency and accuracy. Several simulation examples show the sensitivity of the SVM parameters and demonstrate the superiority of this proposed method for nonlinear function approximation.
基金supported by the National Natural Science Foundation of China(6107313361175053+8 种基金6127236960975019)the Heilongjiang Postdoctoral Grant(LRB08362)the Fundamental Research Funds for the Central Universities of China(2011QN0272011QN1262012QN0302011ZD010)the Science and Technology Planning Project of Dalian City(2011A17GX0732010E15SF153)
文摘An adaptive approach to select analysis window param- eters for linear frequency modulated (LFM) signals is proposed to obtain the optimal 3 dB signal-to-noise ratio (SNR) in the short- time Fourier transform (STFT) domain. After analyzing the instan- taneous frequency and instantaneous bandwidth to deduce the relation between the window length and deviation of the Gaus- sian window, high-order statistics is used to select the appropriate window length for STFT and get the optimal SNR with the right time-frequency resolution according to the signal characteristic under a fixed sampling rate. Computer simulations have verified the effectiveness of the new method.
基金Project(T14JB00200)supported by the Fundamental Research Funds for the Central UniversitiesChina+2 种基金Projects(RCS2012ZZ002RCS2012ZT003)supported by the State Key Laboratory of Rail Traffic Control and SafetyChina
文摘An improved social force model based on exit selection is proposed to simulate pedestrians' microscopic behaviors in subway station. The modification lies in considering three factors of spatial distance, occupant density and exit width. In addition, the problem of pedestrians selecting exit frequently is solved as follows: not changing to other exits in the affected area of one exit, using the probability of remaining preceding exit and invoking function of exit selection after several simulation steps. Pedestrians in subway station have some special characteristics, such as explicit destinations, different familiarities with subway station. Finally, Beijing Zoo Subway Station is taken as an example and the feasibility of the model results is verified through the comparison of the actual data and simulation data. The simulation results show that the improved model can depict the microscopic behaviors of pedestrians in subway station.
文摘Suppliers' selection in supply chain management (SCM) has attracted considerable research interests in recent years. Recent literatures show that neural networks achieve better performance than traditional statistical methods. However, neural networks have inherent drawbacks, such as local optimization solution, lack generalization, and uncontrolled convergence. A relatively new machine learning technique, support vector machine (SVM), which overcomes the drawbacks of neural networks, is introduced to provide a model with better explanatory power to select ideal supplier partners. Meanwhile, in practice, the suppliers' samples are very insufficient. SVMs are adaptive to deal with small samples' training and testing. The prediction accuracies for BPNN and SVM methods are compared to choose the appreciating suppliers. The actual examples illustrate that SVM methods are superior to BPNN.
基金supported by the National Natural Science Foundation of China(7177121671701209)
文摘Since most parameter control methods are based on prior knowledge, it is difficult for them to solve various problems.In this paper, an adaptive selection method used for operators and parameters is proposed and named double adaptive selection(DAS) strategy. Firstly, some experiments about the operator search ability are given and the performance of operators with different donate vectors is analyzed. Then, DAS is presented by inducing the upper confidence bound strategy, which chooses suitable combination of operators and donates sets to optimize solutions without prior knowledge. Finally, the DAS is used under the framework of the multi-objective evolutionary algorithm based on decomposition, and the multi-objective evolutionary algorithm based on DAS(MOEA/D-DAS) is compared to state-of-the-art MOEAs. Simulation results validate that the MOEA/D-DAS could select the suitable combination of operators and donate sets to optimize problems and the proposed algorithm has better convergence and distribution.
文摘A new antenna selection algorithm for multiple input multiple output (MIMO) wireless systems is proposed. The modified Tanimoto coefficient is used to compare the similarity of the rows/columns of the channel matrix. Based on the calculated similarity, the proposed algorithm chooses the antenna subset, which has the maximum product of dissimilarity and Frobenius norm. The proposed algorithm requires low computational complexity as to the optimal selection but with comparative outage capacity and average signal to noise ratio (SNR) performance. It can improve both the outage capacity and the average SNR as compared to random selection. The simulation results are shown to validate our algorithm.
基金supported by the Fundamental Research Funds for the Central Universities(NJ20140010)the Scientific Research Start-up Funding from Jiangsu University of Science and Technology+1 种基金the Scienceand Technology on Electronic Information Control Laboratory Projectthe Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Sensor platforms with active sensing equipment such as radar may betray their existence, by emitting energy that will be intercepted by enemy surveillance sensors. The radar with less emission has more excellent performance of the low probability of intercept(LPI). In order to reduce the emission times of the radar, a novel sensor selection strategy based on an improved interacting multiple model particle filter(IMMPF) tracking method is presented. Firstly the IMMPF tracking method is improved by increasing the weight of the particle which is close to the system state and updating the model probability of every particle. Then a sensor selection approach for LPI takes use of both the target's maneuverability and the state's uncertainty to decide the radar's radiation time. The radar will work only when the target's maneuverability and the state's uncertainty exceed the control capability of the passive sensors. Tracking accuracy and LPI performance are demonstrated in the Monte Carlo simulations.
基金supported by the Qatar National Research Fund(NPRP5-364-2-142NPRP7-1040-2-293)
文摘Monitoring high-dimensional multistage processes becomes crucial to ensure the quality of the final product in modern industry environments. Few statistical process monitoring(SPC) approaches for monitoring and controlling quality in highdimensional multistage processes are studied. We propose a deviance residual-based multivariate exponentially weighted moving average(MEWMA) control chart with a variable selection procedure. We demonstrate that it outperforms the existing multivariate SPC charts in terms of out-of-control average run length(ARL) for the detection of process mean shift.
基金Project (50374058) supported by the National Natural Science Foundation of China and Shanghai Baosteel Group Co.
文摘A theoretical method for selecting strip rolling mill type that considered shape control ability was established using the figure alteration range that was worked by the alteration track of vector expressing strip's cross section (crown) to express the shape control ability of rolling mill. With the mathematical models and simulation software that were developed by the authors' own models, four types of mills were aimed, including HCM (6-high middle rolls shift type HC (high crown) -mill), HCMW (6-high middle rolls and work rolls shift type HC-mill), UCM (6-high middle rolls shift type HC-mill with middle roll bender) and UCMW (6-high middle rolls and work rolls shift type HC-mill with middle roll bender), and the shape and crown control ability of every mill type was analyzed and compared. An appropriate arrangement mode of tandem mill was brought forward. The results show that UCMW mill is a perfect choice for controlling shape and crown, and the area of control characteristics curve of UCMW (or UCM) is twice than that of HCM, but UCM mill is also a good choice for its simple frame. In other word, the shape and crown controlling ability of UCMW mill is better than that of UCM mill, but the frame of UCM mill is simpler than that of UCMW mill. As for the final type of mill, should be synthetically decided by thinking over fund and equipment technology.
基金supported by the National Natural Science Foundation of China(51175502)
文摘The test selection and optimization (TSO) can improve the abilities of fault diagnosis, prognosis and health-state evalua- tion for prognostics and health management (PHM) systems. Traditionally, TSO mainly focuses on fault detection and isolation, but they cannot provide an effective guide for the design for testability (DFT) to improve the PHM performance level. To solve the problem, a model of TSO for PHM systems is proposed. Firstly, through integrating the characteristics of fault severity and propa- gation time, and analyzing the test timing and sensitivity, a testability model based on failure evolution mechanism model (FEMM) for PHM systems is built up. This model describes the fault evolution- test dependency using the fault-symptom parameter matrix and symptom parameter-test matrix. Secondly, a novel method of in- herent testability analysis for PHM systems is developed based on the above information. Having completed the analysis, a TSO model, whose objective is to maximize fault trackability and mini- mize the test cost, is proposed through inherent testability analysis results, and an adaptive simulated annealing genetic algorithm (ASAGA) is introduced to solve the TSO problem. Finally, a case of a centrifugal pump system is used to verify the feasibility and effectiveness of the proposed models and methods. The results show that the proposed technology is important for PHM systems to select and optimize the test set in order to improve their performance level.
基金supported by the National Natural Science Foundation of China (61250005)Jiangxi Postdoctoral Science Foundation(2013KY07)
文摘A joint power control and relay selection scheme is considered for a cooperative and cognitive radio system where a secondary network shares spectrum with the primary network. In the secondary network, two secondary users (SUs) communicate with each other via an assist relay. The main point is to provide the best system performance to SUs while maintaining the interference power at primary user (PU) under a certain level. Using convex optimization, a closed-form solution is obtained when optimizing the power allocation among the two nodes and relay. Based on this result, a joint power control and relay selection scheme with fewer variable dimensions is proposed to maximize the achievable rate of the secondary system. Simulation results demonstrate that the sum rate of the cognitive two-way relay network increases compared with a random relay selection and fixed power allocation.
文摘Real-time hand gesture recognition technology significantly improves the user's experience for virtual reality/augmented reality(VR/AR) applications, which relies on the identification of the orientation of the hand in captured images or videos. A new three-stage pipeline approach for fast and accurate hand segmentation for the hand from a single depth image is proposed. Firstly, a depth frame is segmented into several regions by histogrambased threshold selection algorithm and by tracing the exterior boundaries of objects after thresholding. Secondly, each segmentation proposal is evaluated by a three-layers shallow convolutional neural network(CNN) to determine whether or not the boundary is associated with the hand. Finally, all hand components are merged as the hand segmentation result. Compared with algorithms based on random decision forest(RDF), the experimental results demonstrate that the approach achieves better performance with high-accuracy(88.34% mean intersection over union, mIoU) and a shorter processing time(≤8 ms).
基金Supported by National Natural Science Foundation of P.R.China(60135020)the Project of National Defense Basic Research of P.R.China(A1420061266) the Foundation for University Key Teacher by the Ministry of Education
文摘Neuro-fuzzy(NF)networks are adaptive fuzzy inference systems(FIS)and have been applied to feature selection by some researchers.However,their rule number will grow exponentially as the data dimension increases.On the other hand,feature selection algorithms with artificial neural networks(ANN)usually require normalization of input data,which will probably change some characteristics of original data that are important for classification.To overcome the problems mentioned above,this paper combines the fuzzification layer of the neuro-fuzzy system with the multi-layer perceptron(MLP)to form a new artificial neural network.Furthermore,fuzzification strategy and feature measurement based on membership space are proposed for feature selection. Finally,experiments with both natural and artificial data are carried out to compare with other methods,and the results approve the validity of the algorithm.
基金the National Natural Science Foundation of China (60472103)Shanghai Excellent Academic Leader Project (05XP14027)Shanghai Leading Academic Discipline Project(T0102).
文摘Maximal-ratio transmission systems with transmit antenna selection is investigated. According to the order statistics of channel fiat fading coefficients, the closed-form expressions axe derived for average SNR with any amount of RF chains and average BER with two RF chains, respectively. The algorithm for calculating the minimum of total transmit antennas is presented in terms of reduced RF chains. The method of quantizing transmit precoders is employed in this study to decrease feedback information. Simulation results demonstrate the superiority of the proposed systems under full and quantized transmit precoders. The SNR of the proposed systems has been less degraded by the quantization of transmit precoder than that of pure maximal-ratio transmission systems.
文摘Supplier selection is a multi-objective decision problem, which must be considered many objectives, some objectives are qualitative, and others are quantitative. Meanwhile, manufacturer has preference for different suppliers. In this paper, a new multi-objective decision model with preference information of supplier is established. A practical example of supplier selection problem utilizing this model is studied. The result demonstrates the feasibility and effectiveness of the methods proposed in the paper.
基金the Natural Science Foundation of Anhui Province of China (050420212)the Excellent Youth Science and Technology Foundation of Anhui Province of China (04042069).
文摘A quality of service (QoS) or constraint-based routing selection needs to find a path subject to multiple constraints through a network. The problem of finding such a path is known as the multi-constrained path (MCP) problem, and has been proven to be NP-complete that cannot be exactly solved in a polynomial time. The NPC problem is converted into a multiobjective optimization problem with constraints to be solved with a genetic algorithm. Based on the Pareto optimum, a constrained routing computation method is proposed to generate a set of nondominated optimal routes with the genetic algorithm mechanism. The convergence and time complexity of the novel algorithm is analyzed. Experimental results show that multiobjective evolution is highly responsive and competent for the Pareto optimum-based route selection. When this method is applied to a MPLS and metropolitan-area network, it will be capable of optimizing the transmission performance.
基金supported by the National Natural Science Foundation of China(71690233)the Scientific Research Foundation of National University of Defense Technology(ZK19-16)the PLA military graduate student funding project.
文摘Equipment selection is an essential work in the research and development planning of equipment.The scientific and rational development of weapons equipment portfolios is of considerable significance to the optimization of equipment architecture design,the adequate resources allocation,and the joint combat performance.From the system view,this paper proposes a method of weapons equipment portfolios selection(WEPS)based on the contribution rate of weapon systems,providing a new idea for weapon equipment portfolio selection.Firstly,we analyze the WEPS problem and the concept of the contribution rate under the systems background.Secondly,we propose a combat network modeling method for weapon equipment systems based on the function chain.Thirdly,we propose a WEPS method based on the contribution rate,fully considering the correlation relationships between potential weapons and the old weapon systems by the combat network model,under the limitation of capability demands and budget resources,with the objective to maximally increasing the combat ability of weapon systems.Finally,we make a case study with a specific WEPS problem where the whole calculation processes and results are analyzed and exhibited to verify the feasibility and effectiveness of the proposed method model.
基金supported by the National Natural Science Foundation of China(61601504)
文摘An antenna adjustment strategy is developed for the target tracking problem in the collocated multiple-input multipleoutput(MIMO)radar.The basic technique of this strategy is to optimally allocate antennas by the prior information in the tracking recursive period,with the objective of enhancing the worst-case estimate precision of multiple targets.On account of the posterior Cramer-Rao lower bound(PCRLB)offering a quantitative measure for target tracking accuracy,the PCRLB of joint direction-of-arrival(DOA)and Doppler is derived and utilized as the optimization criterion.It is shown that the dynamic antenna selection problem is NP-hard,and an efficient technique which combines convex relaxation with local search is put forward as the solution.Simulation results demonstrate the outperformance of the proposed strategy to the fixed antenna configuration and heuristic search algorithm.Moreover,it is able to offer close-to performance of the exhaustive search method.