In order to effectively solve combinatorial optimization problems,a membrane-inspired quantum bee colony optimization(MQBCO)is proposed for scientific computing and engineering applications.The proposed MQBCO algorith...In order to effectively solve combinatorial optimization problems,a membrane-inspired quantum bee colony optimization(MQBCO)is proposed for scientific computing and engineering applications.The proposed MQBCO algorithm applies the membrane computing theory to quantum bee colony optimization(QBCO),which is an effective discrete optimization algorithm.The global convergence performance of MQBCO is proved by Markov theory,and the validity of MQBCO is verified by testing the classical benchmark functions.Then the proposed MQBCO algorithm is used to solve decision engine problems of cognitive radio system.By hybridizing the QBCO and membrane computing theory,the quantum state and observation state of the quantum bees can be well evolved within the membrane structure.Simulation results for cognitive radio system show that the proposed decision engine method is superior to the traditional intelligent decision engine algorithms in terms of convergence,precision and stability.Simulation experiments under different communication scenarios illustrate that the balance between three objective functions and the adapted parameter configuration is consistent with the weights of three normalized objective functions.展开更多
To solve discrete optimization difficulty of the spectrum allocation problem,a membrane-inspired quantum shuffled frog leaping(MQSFL) algorithm is proposed.The proposed MQSFL algorithm applies the theory of membrane...To solve discrete optimization difficulty of the spectrum allocation problem,a membrane-inspired quantum shuffled frog leaping(MQSFL) algorithm is proposed.The proposed MQSFL algorithm applies the theory of membrane computing and quantum computing to the shuffled frog leaping algorithm,which is an effective discrete optimization algorithm.Then the proposed MQSFL algorithm is used to solve the spectrum allocation problem of cognitive radio systems.By hybridizing the quantum frog colony optimization and membrane computing,the quantum state and observation state of the quantum frogs can be well evolved within the membrane structure.The novel spectrum allocation algorithm can search the global optimal solution within a reasonable computation time.Simulation results for three utility functions of a cognitive radio system are provided to show that the MQSFL spectrum allocation method is superior to some previous spectrum allocation algorithms based on intelligence computing.展开更多
In order to solve the non-linear and high-dimensional optimization problems more effectively, an improved self-adaptive membrane computing(ISMC) optimization algorithm was proposed. The proposed ISMC algorithm applied...In order to solve the non-linear and high-dimensional optimization problems more effectively, an improved self-adaptive membrane computing(ISMC) optimization algorithm was proposed. The proposed ISMC algorithm applied improved self-adaptive crossover and mutation formulae that can provide appropriate crossover operator and mutation operator based on different functions of the objects and the number of iterations. The performance of ISMC was tested by the benchmark functions. The simulation results for residue hydrogenating kinetics model parameter estimation show that the proposed method is superior to the traditional intelligent algorithms in terms of convergence accuracy and stability in solving the complex parameter optimization problems.展开更多
Spiking neural P systems with anti-spikes (ASN P systems) are variant forms of spiking neural P systems, which are inspired by inhibitory impulses/spikes or inhibitory synapses. The typical feature of ASN P systems ...Spiking neural P systems with anti-spikes (ASN P systems) are variant forms of spiking neural P systems, which are inspired by inhibitory impulses/spikes or inhibitory synapses. The typical feature of ASN P systems is when a neuron contains both spikes and anti-spikes, spikes and anti-spikes wil immediately annihilate each other in a maximal way. In this paper, a restricted variant of ASN P systems, cal ed ASN P systems without anni-hilating priority, is considered, where the annihilating rule is used as the standard rule, i.e., it is not obligatory to use in the neuron associated with both spikes and anti-spikes. If the annihilating rule is used in a neuron, the annihilation wil consume one time unit. As a result, such systems using two categories of spiking rules (identified by (a, a) and (a,a^-)) can achieve Turing completeness as number accepting devices.展开更多
基金Projects(61102106,61102105)supported by the National Natural Science Foundation of ChinaProject(2013M530148)supported by China Postdoctoral Science Foundation+1 种基金Project(HEUCF140809)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(LBH-Z13054)supported by Heilongjiang Postdoctoral Fund,China
文摘In order to effectively solve combinatorial optimization problems,a membrane-inspired quantum bee colony optimization(MQBCO)is proposed for scientific computing and engineering applications.The proposed MQBCO algorithm applies the membrane computing theory to quantum bee colony optimization(QBCO),which is an effective discrete optimization algorithm.The global convergence performance of MQBCO is proved by Markov theory,and the validity of MQBCO is verified by testing the classical benchmark functions.Then the proposed MQBCO algorithm is used to solve decision engine problems of cognitive radio system.By hybridizing the QBCO and membrane computing theory,the quantum state and observation state of the quantum bees can be well evolved within the membrane structure.Simulation results for cognitive radio system show that the proposed decision engine method is superior to the traditional intelligent decision engine algorithms in terms of convergence,precision and stability.Simulation experiments under different communication scenarios illustrate that the balance between three objective functions and the adapted parameter configuration is consistent with the weights of three normalized objective functions.
基金supported by the National Natural Science Foundation of China (61102106,61102105)the Fundamental Research Funds for the Central Universities (HEUCF100801,HEUCFZ1129)
文摘To solve discrete optimization difficulty of the spectrum allocation problem,a membrane-inspired quantum shuffled frog leaping(MQSFL) algorithm is proposed.The proposed MQSFL algorithm applies the theory of membrane computing and quantum computing to the shuffled frog leaping algorithm,which is an effective discrete optimization algorithm.Then the proposed MQSFL algorithm is used to solve the spectrum allocation problem of cognitive radio systems.By hybridizing the quantum frog colony optimization and membrane computing,the quantum state and observation state of the quantum frogs can be well evolved within the membrane structure.The novel spectrum allocation algorithm can search the global optimal solution within a reasonable computation time.Simulation results for three utility functions of a cognitive radio system are provided to show that the MQSFL spectrum allocation method is superior to some previous spectrum allocation algorithms based on intelligence computing.
基金Projects(61203020,61403190)supported by the National Natural Science Foundation of ChinaProject(BK20141461)supported by the Jiangsu Province Natural Science Foundation,China
文摘In order to solve the non-linear and high-dimensional optimization problems more effectively, an improved self-adaptive membrane computing(ISMC) optimization algorithm was proposed. The proposed ISMC algorithm applied improved self-adaptive crossover and mutation formulae that can provide appropriate crossover operator and mutation operator based on different functions of the objects and the number of iterations. The performance of ISMC was tested by the benchmark functions. The simulation results for residue hydrogenating kinetics model parameter estimation show that the proposed method is superior to the traditional intelligent algorithms in terms of convergence accuracy and stability in solving the complex parameter optimization problems.
基金supported by the National Natural Science Foundation of China(6103300361100145+1 种基金91130034)the China Postdoctoral Science Foundation(2014M550389)
文摘Spiking neural P systems with anti-spikes (ASN P systems) are variant forms of spiking neural P systems, which are inspired by inhibitory impulses/spikes or inhibitory synapses. The typical feature of ASN P systems is when a neuron contains both spikes and anti-spikes, spikes and anti-spikes wil immediately annihilate each other in a maximal way. In this paper, a restricted variant of ASN P systems, cal ed ASN P systems without anni-hilating priority, is considered, where the annihilating rule is used as the standard rule, i.e., it is not obligatory to use in the neuron associated with both spikes and anti-spikes. If the annihilating rule is used in a neuron, the annihilation wil consume one time unit. As a result, such systems using two categories of spiking rules (identified by (a, a) and (a,a^-)) can achieve Turing completeness as number accepting devices.