Media based modulation(MBM)is expected to be a prominent modulation scheme,which has access to the high data rate by using radio frequency(RF)mirrors and fewer transmit antennas.Associated with multiuser multiple inpu...Media based modulation(MBM)is expected to be a prominent modulation scheme,which has access to the high data rate by using radio frequency(RF)mirrors and fewer transmit antennas.Associated with multiuser multiple input multiple output(MIMO),the MBM scheme achieves better performance than other conventional multiuser MIMO schemes.In this paper,the massive MIMO uplink is considered and a conjunctive MBM transmission scheme for each user is employed.This conjunctive MBM transmission scheme gathers aggregate MBM signals in multiple continuous time slots,which exploits the structured sparsity of these aggregate MBM signals.Under this kind of scenario,a multiuser detector with low complexity based on the compressive sensing(CS)theory to gain better detection performance is proposed.This detector is developed from the greedy sparse recovery technique compressive sampling matching pursuit(CoSaMP)and exploits not only the inherently distributed sparsity of MBM signals but also the structured sparsity of multiple aggregate MBM signals.By exploiting these sparsity,the proposed CoSaMP based multiuser detector achieves reliable detection with low complexity.Simulation results demonstrate that the proposed CoSaMP based multiuser detector achieves better detection performance compared with the conventional methods.展开更多
差分空间调制(Differential Spatial Modulation,DSM)是一种多天线差分空间调制技术,具有低功耗低复杂度且无需信道估计的特点,适用于高速移动且对功耗和复杂度要求较高的物联网、6G等通信系统。由于DSM发射信号存在稀疏结构和需要满足...差分空间调制(Differential Spatial Modulation,DSM)是一种多天线差分空间调制技术,具有低功耗低复杂度且无需信道估计的特点,适用于高速移动且对功耗和复杂度要求较高的物联网、6G等通信系统。由于DSM发射信号存在稀疏结构和需要满足差分编码等要求,限制了系统频谱效率的提升。因此,为了提高DSM系统的传输速率,将媒介调制(Media-Based Modulation,MBM)技术引入差分系统,提出了差分空时媒介调制(Differential Space Time Media-Based Modulation,DST-MBM)系统,在保留DSM固有优势的同时,通过射频镜(Radio Frequency Mirror,RFM)传递额外的信息比特,极大提高了传输效率。展开更多
文摘Media based modulation(MBM)is expected to be a prominent modulation scheme,which has access to the high data rate by using radio frequency(RF)mirrors and fewer transmit antennas.Associated with multiuser multiple input multiple output(MIMO),the MBM scheme achieves better performance than other conventional multiuser MIMO schemes.In this paper,the massive MIMO uplink is considered and a conjunctive MBM transmission scheme for each user is employed.This conjunctive MBM transmission scheme gathers aggregate MBM signals in multiple continuous time slots,which exploits the structured sparsity of these aggregate MBM signals.Under this kind of scenario,a multiuser detector with low complexity based on the compressive sensing(CS)theory to gain better detection performance is proposed.This detector is developed from the greedy sparse recovery technique compressive sampling matching pursuit(CoSaMP)and exploits not only the inherently distributed sparsity of MBM signals but also the structured sparsity of multiple aggregate MBM signals.By exploiting these sparsity,the proposed CoSaMP based multiuser detector achieves reliable detection with low complexity.Simulation results demonstrate that the proposed CoSaMP based multiuser detector achieves better detection performance compared with the conventional methods.
文摘差分空间调制(Differential Spatial Modulation,DSM)是一种多天线差分空间调制技术,具有低功耗低复杂度且无需信道估计的特点,适用于高速移动且对功耗和复杂度要求较高的物联网、6G等通信系统。由于DSM发射信号存在稀疏结构和需要满足差分编码等要求,限制了系统频谱效率的提升。因此,为了提高DSM系统的传输速率,将媒介调制(Media-Based Modulation,MBM)技术引入差分系统,提出了差分空时媒介调制(Differential Space Time Media-Based Modulation,DST-MBM)系统,在保留DSM固有优势的同时,通过射频镜(Radio Frequency Mirror,RFM)传递额外的信息比特,极大提高了传输效率。