Nitrogen(N)and phosphorus(P)are mineral nutrients essential for plant growth and development,playing a crucial role throughout the plant life cycle.Cotton,a globally significant textile crop,has a particularly high de...Nitrogen(N)and phosphorus(P)are mineral nutrients essential for plant growth and development,playing a crucial role throughout the plant life cycle.Cotton,a globally significant textile crop,has a particularly high demand for N fertilizer across its developmental stages.This review explores the effects of adequate or deficient N and P levels on cotton growth phases,focusing on their influence on physiological processes and molecular mechanisms.Key topics include the regulation of N-and P-related enzymes,hormones,and genes,as well as the complex interplay of N-and P-related signaling pathways from the aspects of N-P signaling integration to regulate root development,N-P signaling integration to regulate nutrient uptake,and regulation of N-P interactions—a frontier in current research.Strategies for improving N and P use efficiency are also discussed,including developing high-efficiency cotton cultivars and identifying functional genes to enhance productivity.Generally speaking,we take model plants as a reference in the hope of coming up with new strategies for the efficient utilization of N and P in cotton.展开更多
For the purpose of improving efficiency and realizing start–stop function, an electric oil pump(EOP) is integrated into an 8-speed automatic transmission(AT). A mathematical model is built to calculate the transmissi...For the purpose of improving efficiency and realizing start–stop function, an electric oil pump(EOP) is integrated into an 8-speed automatic transmission(AT). A mathematical model is built to calculate the transmission power loss and the hydraulic system leakage. Based on this model, a flow-based control strategy is developed for EOP to satisfy the system flow requirement. This control strategy is verified through the forward driving simulation. The results indicate that there is a best combination for the size of mechanical oil pump(MOP) and EOP in terms of minimum energy consumption. In order to get a quick and smooth starting process, control strategies of the EOP and the on-coming clutch are proposed. The test environment on a prototype vehicle is built to verify the feasibility of the integrated EOP and its control strategies. The results show that the selected EOP can satisfy the flow requirement and a quick and smooth starting performance is achieved in the start–stop function. This research has a high value for the forward design of EOP in automatic transmissions with respect to efficiency improvement and start–stop function.展开更多
The relationship between engine mechanics and thermo-dynamics has been investigated by means of numerical simulation.The inherent mismatching between the mechanical behaviors and the thermodynamic process in internal ...The relationship between engine mechanics and thermo-dynamics has been investigated by means of numerical simulation.The inherent mismatching between the mechanical behaviors and the thermodynamic process in internal combustion engine is identified,which is believed to be one of the important limiting factors of energy efficiency for conventional engines available in the current market.An approach for engine efficiency improvement through optimal matching between mechanics and thermodynamics(OMBMT)is proposed.An ideal matching model is defined and the conflicts due to the constraints among the mapping strokes in a 4-stroke engine are analyzed.A novel mechanical model is built for approaching optimal matching among all 4 individual strokes in a 4-stroke spark-ignition engine,which is composed of non-circular gears(NCG)and integrated with conventional slider crank engine mechanism.By means of digital mechanical model and numerical simulation,the matching gains among all 4 strokes are defined and calculated for quantifying the NCG engine efficiency improvement by comparing with a baseline engine.The potentials with the OMBMT implemented and the enhancements made by NCG mechanism for engines in terms of overall engine efficiency are reported.Based on the results achieved,it is recommended that the feasibility studies and the experimental validations should be conducted to verify the engine matching concept and effectiveness of the NCG mechanism engine model proposed,and the engine performance and NCG design parameters should be further optimized.展开更多
基金supported by Supported by National Key Laboratory of Cotton Bio-breeding and Integrated Utilization(CB2023C07)Xinjiang Autonomous Region"Three Agricultural"Backbone Talent Training Program(2022SNGGNT024)Xinjiang Huyanghe City Science and Technology Program(2023C08).
文摘Nitrogen(N)and phosphorus(P)are mineral nutrients essential for plant growth and development,playing a crucial role throughout the plant life cycle.Cotton,a globally significant textile crop,has a particularly high demand for N fertilizer across its developmental stages.This review explores the effects of adequate or deficient N and P levels on cotton growth phases,focusing on their influence on physiological processes and molecular mechanisms.Key topics include the regulation of N-and P-related enzymes,hormones,and genes,as well as the complex interplay of N-and P-related signaling pathways from the aspects of N-P signaling integration to regulate root development,N-P signaling integration to regulate nutrient uptake,and regulation of N-P interactions—a frontier in current research.Strategies for improving N and P use efficiency are also discussed,including developing high-efficiency cotton cultivars and identifying functional genes to enhance productivity.Generally speaking,we take model plants as a reference in the hope of coming up with new strategies for the efficient utilization of N and P in cotton.
基金Project(51405010)supported by the National Natural Science Foundation of ChinaProject(2011BAG09B00)supported by the National Science and Technology Support Program of China
文摘For the purpose of improving efficiency and realizing start–stop function, an electric oil pump(EOP) is integrated into an 8-speed automatic transmission(AT). A mathematical model is built to calculate the transmission power loss and the hydraulic system leakage. Based on this model, a flow-based control strategy is developed for EOP to satisfy the system flow requirement. This control strategy is verified through the forward driving simulation. The results indicate that there is a best combination for the size of mechanical oil pump(MOP) and EOP in terms of minimum energy consumption. In order to get a quick and smooth starting process, control strategies of the EOP and the on-coming clutch are proposed. The test environment on a prototype vehicle is built to verify the feasibility of the integrated EOP and its control strategies. The results show that the selected EOP can satisfy the flow requirement and a quick and smooth starting performance is achieved in the start–stop function. This research has a high value for the forward design of EOP in automatic transmissions with respect to efficiency improvement and start–stop function.
文摘The relationship between engine mechanics and thermo-dynamics has been investigated by means of numerical simulation.The inherent mismatching between the mechanical behaviors and the thermodynamic process in internal combustion engine is identified,which is believed to be one of the important limiting factors of energy efficiency for conventional engines available in the current market.An approach for engine efficiency improvement through optimal matching between mechanics and thermodynamics(OMBMT)is proposed.An ideal matching model is defined and the conflicts due to the constraints among the mapping strokes in a 4-stroke engine are analyzed.A novel mechanical model is built for approaching optimal matching among all 4 individual strokes in a 4-stroke spark-ignition engine,which is composed of non-circular gears(NCG)and integrated with conventional slider crank engine mechanism.By means of digital mechanical model and numerical simulation,the matching gains among all 4 strokes are defined and calculated for quantifying the NCG engine efficiency improvement by comparing with a baseline engine.The potentials with the OMBMT implemented and the enhancements made by NCG mechanism for engines in terms of overall engine efficiency are reported.Based on the results achieved,it is recommended that the feasibility studies and the experimental validations should be conducted to verify the engine matching concept and effectiveness of the NCG mechanism engine model proposed,and the engine performance and NCG design parameters should be further optimized.