The exploration of Mars would heavily rely on Martian rocks mechanics and engineering technology.As the mechanical property of Martian rocks is uncertain,it is of utmost importance to predict the probability distribut...The exploration of Mars would heavily rely on Martian rocks mechanics and engineering technology.As the mechanical property of Martian rocks is uncertain,it is of utmost importance to predict the probability distribution of Martian rocks mechanical property for the success of Mars exploration.In this paper,a fast and accurate probability distribution method for predicting the macroscale elastic modulus of Martian rocks was proposed by integrating the microscale rock mechanical experiments(micro-RME),accurate grain-based modeling(AGBM)and upscaling methods based on reliability principles.Firstly,the microstructure of NWA12564 Martian sample and elastic modulus of each mineral were obtained by micro-RME with TESCAN integrated mineral analyzer(TIMA)and nanoindentation.The best probability distribution function of the minerals was determined by Kolmogorov-Smirnov(K-S)test.Secondly,based on best distribution function of each mineral,the Monte Carlo simulations(MCS)and upscaling methods were implemented to obtain the probability distribution of upscaled elastic modulus.Thirdly,the correlation between the upscaled elastic modulus and macroscale elastic modulus obtained by AGBM was established.The accurate probability distribution of the macroscale elastic modulus was obtained by this correlation relationship.The proposed method can predict the probability distribution of Martian rocks mechanical property with any size and shape samples.展开更多
The deformation energy(Wd)of soil-like tectonic coal is crucial for investigating the mechanism of coal and gas outbursts.Tectonic coal has a significant nonlinear constitutive relationship,which makes traditional ela...The deformation energy(Wd)of soil-like tectonic coal is crucial for investigating the mechanism of coal and gas outbursts.Tectonic coal has a significant nonlinear constitutive relationship,which makes traditional elastic-based models for computing Wdunsuitable.Inspired by critical state soil mechanics,this study theoretically established a new calculation model of Wdsuitable for the coal with nonlinear deformation characteristics.In the new model,the relationship between energy and stress no longer follows the square law(observed in traditional linear elastic models)but exhibits a power function,with the theoretical value of the power exponent ranging between 1 and 2.Hydrostatic cyclic loading and unloading experiments were conducted on four groups of tectonic coal samples and one group of intact coal samples.The results indicated that the relationship between Wdand stress for both intact and tectonic coal follows a power law.The exponents for intact and tectonic coal are close to 2 and 1,respectively.The stress-strain curve of intact coal exhibits small deformation and linear characteristics,whereas the stress-strain curves of tectonic coal show large deformation and nonlinear characteristics.The study specifically investigates the role of coal viscosity in the cyclic loading/unloading process.The downward bending in the unloading curves can be attributed to the time-dependent characteristics of coal,particularly its viscoelastic behavior.Based on experimental statistics,the calculation model of Wdwas further simplified.The simplified model involves only one unknown parameter,which is the power exponent between Wdand stress.The measured Wdof the coal samples increases with the number of load cycles.This phenomenon is attributed to coal's viscoelastic deformation.Within the same stress,the Wdof tectonic coal is an order of magnitude greater than that of intact coal.The calculation model of Wdproposed in this paper provides a new tool for studying the energy principle of coal and gas outbursts.展开更多
Quantifying the rockburst consequence is of critical importance to reduce the hazards with preventative measures in underground mines and deep tunnels. Contours of energy components within a pillar model are plotted a...Quantifying the rockburst consequence is of critical importance to reduce the hazards with preventative measures in underground mines and deep tunnels. Contours of energy components within a pillar model are plotted at different rockmass damage stages, and plastic strain work and released energy are proposed as indicators of rockmass damage consequence. One pillar model under different loading stiffness is simulated to assess indicators of pillar burst and the resulting damages. The results show the rockmass damage under soft loading stiffness has larger magnitude of plastic strain work and released energy than that which is under stiff loading stiffness, indicating the rockburst consequence can be quantified with plastic strain work and released energy in numerical models. With the quantified rockburst consequence,preventative measures can be taken to avoid severe hazards to mine safety.展开更多
To explore the failure mechanism of roadway in layered soft rocks,a physical model with the physically finite elemental slab assemblage(PFESA)method was established.Infrared thermography and a video camera were employ...To explore the failure mechanism of roadway in layered soft rocks,a physical model with the physically finite elemental slab assemblage(PFESA)method was established.Infrared thermography and a video camera were employed to capture thermal responses and deformation.The model results showed that layered soft roadway suffered from large deformation.A three-dimensional distinct element code(3 DEC)model with tetrahedral blocks was built to capture the characteristics of roadway deformation,stress,and cracks.The results showed two failure patterns,layer bending fracture and layer slipping after excavation.The layer bending fracture occurred at positions where the normal direction of layers pointed to the inside of the roadway and the layer slipping occurred in the ribs.Six schemes were proposed to investigate the effects of layered soft rocks.The results showed that the deformation of ribs was obviously larger than that of the roof and floor when the roadway passed through three types of strata.When the roadway was completely in a coal seam,the change of deformation in ribs was not obvious,while the deformation in the roof and floor increased obviously.These results can provide guidance for excavation and support design of roadways in layered soft rocks.展开更多
The mechanical properties such as Young's modulus, hardness and fracture toughness of Lower Silurian Longmaxi shale samples from Youyang area in southeast Chongqing, China were investigated using dot matrix nanoin...The mechanical properties such as Young's modulus, hardness and fracture toughness of Lower Silurian Longmaxi shale samples from Youyang area in southeast Chongqing, China were investigated using dot matrix nanoindentation measurements. With the help of field emission scanning electron microscope(FESEM) and energy dispersive X-ray fluorescence spectroscopy(EDS), the indentation morphology and mineral composition in indentation area were quantitatively analyzed. According to mechanical strength classification, a micromechanical model with three components was introduced and the Mori-Tanaka model was used to upscale mechanical parameters from nano-scale to centimeter-size scale, which were further compared with uniaxial compression results. The experimental results show that there is a positive linear correlation between Young's modulus and hardness and between the Young's modulus and the fracture toughness under nano-scale; the Young's modulus, hardness and fracture toughness perpendicular to the bedding are slightly lower than those parallel with the bedding. According to data statistics, the mechanical properties at the nano-scale follow Weibull distribution feature and the dispersion degree of hardness results is the highest, which is mainly due to shale anisotropy and nanoindentation projection uncertainty. Comparing the results from nanoindentation test, with those from upscaling model and uniaxial compression test shows that the mechanical parameters at the nano-scale are higher than those from upscaling model and uniaxial compression test, which proves mechanical parameters at different scales have differences. It's because the larger the core, the more pores and internal weakness it contains, the less accurate the interpreted results of mechanical parameters will be.展开更多
The lack of understanding of plastic hardening(softening)laws,especially under anisotropic stress conditions,results in inappropriate geotechnical management.Most of the yielding envelopes do not consider the effect o...The lack of understanding of plastic hardening(softening)laws,especially under anisotropic stress conditions,results in inappropriate geotechnical management.Most of the yielding envelopes do not consider the effect of intermediate principal stress and the influence of Lode's angle.In addition,the application of plastic flow rules regarding yielding surfaces compromises the softening of rock internal friction as well as the influence of Lode's angle on the plastic potential.Moreover,the ductility to brittleness transition in the intermediate principal stress direction still requires a theoretical foundation.In this study,based on poly-axial testing results of Yunnan sandstone,we adopted a failure criterion with the intermediate principal stress proposed by Menétrey and Willam.The proposed new failure envelope was applied to capture the plastic evolution of rock samples.A plastic hardening-softening model is constructed,based on the framework of the plastic theory.The softening envelope is modified to better present the stress drop and considers the deterioration of rock internal friction in the post-peak stage of poly-axial loading.The differential of plastic potential according to the principal stresses is also modified,considering the rotation of Lode's angle in the poly-axial loading tests.The model results were compared with laboratory testing results,which showed great consistency across 9 different loading tests(5 under triaxial stress and 4 under poly-axial stress with 22 stress-strain curves in total).The induced brittleness by the intermediate principal stress is also well captured by the proposed model.展开更多
Coal-rock as a typical sedimentary rock has obvious stratification,namely it has transversely isotropic feature.Meanwhile,deformation leads to coal-rock mass having the characteristics of different porous and crack st...Coal-rock as a typical sedimentary rock has obvious stratification,namely it has transversely isotropic feature.Meanwhile,deformation leads to coal-rock mass having the characteristics of different porous and crack structures as well as local anisotropy.Equivalent axial and circumferential strain' formulas of the pure coal-rock mass specimen with a single crack were derived through the establishment of equivalent mechanical model of standard cylindrical coal-rock specimen,and have been widely used to a variety of media combined different structures containing multiple cracks.The complete stress strain curve of a real coal-rock specimen was obtained by the CTC test.Additionally,according to the comparison with the theoretical value,the theoretical mechanical model could well explain the deformation characteristics of coal-rock mass and verify its validity.Further,following features were analyzed:strain normalized coefficient and elastic modulus(Poisson's ratio) in vertical and parallel direction to the stratification,stratification angle,porosity,pore radius,normal and tangential stiffness of crack,and the relationship of different crack width with different tangential stiffness of crack.Through the analysis above,it substantiate this claim that the theoretical model with better reliability reflects the transversely isotropic nature of the coal-rock and the local anisotropy caused by the porous and cracks.展开更多
Complexities in mechanical behaviours of rock masses mainly stem from inherent discontinuities,which calls for advanced bolt-grouting techniques for stability enhancement.Understanding the mechanical properties of bol...Complexities in mechanical behaviours of rock masses mainly stem from inherent discontinuities,which calls for advanced bolt-grouting techniques for stability enhancement.Understanding the mechanical properties of bolt-grouted fractured rock mass(BGFR)and developing accurate prediction methods are crucial to optimize the BGFR support strategies.This paper establishes a new elastoplastic(E-P)model based on the orthotropic and the Mohr-Coulomb(M-C)plastic-yielding criteria.The elastic parameters of the model were derived through a meso-mechanical analysis of composite materials mechanics(CMM).Laboratory BGFR specimens were prepared and uniaxial compression test and variable-angle shear test considering different bolt arrangements were carried out to obtain the mechanical parameters of the specimens.Results showed that the anisotropy of BGFR mainly depends on the relative volume content of each component material in a certain direction.Moreover,the mechanical parameters deduced from the theory of composite materials which consider the short fibre effect are shown to be in good agreement with those determined by laboratory experiments,and the variation rules maintained good consistency.Last,a case study of a real tunnel project is provided to highlight the effectiveness,validity and robustness of the developed E-P model in prediction of stresses and deformations.展开更多
To better understand the failure behaviours and strength of bolt-reinforced blocky rocks,large scale extensive laboratory experiments are carried out on blocky rock-like specimens with and without rockbolt reinforceme...To better understand the failure behaviours and strength of bolt-reinforced blocky rocks,large scale extensive laboratory experiments are carried out on blocky rock-like specimens with and without rockbolt reinforcement.The results show that both shear failure and tensile failure along joint surfaces are observed but the shear failure is a main controlling factor for the peak strength of the rock mass with and without rockbolts.The rockbolts are necked and shear deformation simultaneously happens in bolt reinforced rock specimens.As the joint dip angle increases,the joint shear failure becomes more dominant.The number of rockbolts has a significant impact on the peak strain and uniaxial compressive strength(UCS),but little influence on the deformation modulus of the rock mass.Using the Winkler beam model to represent the rockbolt behaviours,an analytical model for the prediction of the strength of boltreinforced blocky rocks is proposed.Good agreement between the UCS values predicted by proposed model and obtained from experiments suggest an encouraging performance of the proposed model.In addition,the performance of the proposed model is further assessed using published results in the literature,indicating the proposed model can be used effectively in the prediction of UCS of bolt-reinforced blocky rocks.展开更多
Using the self-developed visualization test apparatus, centrifuge model tests at 20 g were carried out to research the macro and microscopic formation mechanism of coarse sand debris flows. The formation mode and soil...Using the self-developed visualization test apparatus, centrifuge model tests at 20 g were carried out to research the macro and microscopic formation mechanism of coarse sand debris flows. The formation mode and soil-water interaction mechanism of the debris flows were analyzed from both macroscopic and microscopic points of view respectively using high digital imaging equipment and micro-structure analysis software Geodip. The test results indicate that the forming process of debris flow mainly consists of three stages, namely the infiltration and softening stage, the overall slide stage, and debris flow stage. The essence of simulated coarse sand slope forming debris flow is that local fluidization cause slope to wholly slide. The movement of small particles forms a transient stagnant layer with increasing saturation, causing soil shear strength lost and local fluidization. When the driving force of the saturated soil exceeds the resisting force, debris flow happens on the coarse sand slope immediately.展开更多
文摘The exploration of Mars would heavily rely on Martian rocks mechanics and engineering technology.As the mechanical property of Martian rocks is uncertain,it is of utmost importance to predict the probability distribution of Martian rocks mechanical property for the success of Mars exploration.In this paper,a fast and accurate probability distribution method for predicting the macroscale elastic modulus of Martian rocks was proposed by integrating the microscale rock mechanical experiments(micro-RME),accurate grain-based modeling(AGBM)and upscaling methods based on reliability principles.Firstly,the microstructure of NWA12564 Martian sample and elastic modulus of each mineral were obtained by micro-RME with TESCAN integrated mineral analyzer(TIMA)and nanoindentation.The best probability distribution function of the minerals was determined by Kolmogorov-Smirnov(K-S)test.Secondly,based on best distribution function of each mineral,the Monte Carlo simulations(MCS)and upscaling methods were implemented to obtain the probability distribution of upscaled elastic modulus.Thirdly,the correlation between the upscaled elastic modulus and macroscale elastic modulus obtained by AGBM was established.The accurate probability distribution of the macroscale elastic modulus was obtained by this correlation relationship.The proposed method can predict the probability distribution of Martian rocks mechanical property with any size and shape samples.
基金supported by the Fundamental Research Funds for the Central Universities(No.2024QN11072)National Natural Science Foundation of China(Nos.52404264 and 52174217)State Key Program of the National Natural Science Foundation of China(No.52034008)。
文摘The deformation energy(Wd)of soil-like tectonic coal is crucial for investigating the mechanism of coal and gas outbursts.Tectonic coal has a significant nonlinear constitutive relationship,which makes traditional elastic-based models for computing Wdunsuitable.Inspired by critical state soil mechanics,this study theoretically established a new calculation model of Wdsuitable for the coal with nonlinear deformation characteristics.In the new model,the relationship between energy and stress no longer follows the square law(observed in traditional linear elastic models)but exhibits a power function,with the theoretical value of the power exponent ranging between 1 and 2.Hydrostatic cyclic loading and unloading experiments were conducted on four groups of tectonic coal samples and one group of intact coal samples.The results indicated that the relationship between Wdand stress for both intact and tectonic coal follows a power law.The exponents for intact and tectonic coal are close to 2 and 1,respectively.The stress-strain curve of intact coal exhibits small deformation and linear characteristics,whereas the stress-strain curves of tectonic coal show large deformation and nonlinear characteristics.The study specifically investigates the role of coal viscosity in the cyclic loading/unloading process.The downward bending in the unloading curves can be attributed to the time-dependent characteristics of coal,particularly its viscoelastic behavior.Based on experimental statistics,the calculation model of Wdwas further simplified.The simplified model involves only one unknown parameter,which is the power exponent between Wdand stress.The measured Wdof the coal samples increases with the number of load cycles.This phenomenon is attributed to coal's viscoelastic deformation.Within the same stress,the Wdof tectonic coal is an order of magnitude greater than that of intact coal.The calculation model of Wdproposed in this paper provides a new tool for studying the energy principle of coal and gas outbursts.
基金funded by the National Institute of Occupational Health and Science (NIOSH) under Grant Number 200-2016-90154
文摘Quantifying the rockburst consequence is of critical importance to reduce the hazards with preventative measures in underground mines and deep tunnels. Contours of energy components within a pillar model are plotted at different rockmass damage stages, and plastic strain work and released energy are proposed as indicators of rockmass damage consequence. One pillar model under different loading stiffness is simulated to assess indicators of pillar burst and the resulting damages. The results show the rockmass damage under soft loading stiffness has larger magnitude of plastic strain work and released energy than that which is under stiff loading stiffness, indicating the rockburst consequence can be quantified with plastic strain work and released energy in numerical models. With the quantified rockburst consequence,preventative measures can be taken to avoid severe hazards to mine safety.
基金supported by the National Key Research and Development Plan of China(No.2016YFC0600901)the National Natural Science Foundation of China(No.51874311)the Natural Science Foundation of China(No.51904306)。
文摘To explore the failure mechanism of roadway in layered soft rocks,a physical model with the physically finite elemental slab assemblage(PFESA)method was established.Infrared thermography and a video camera were employed to capture thermal responses and deformation.The model results showed that layered soft roadway suffered from large deformation.A three-dimensional distinct element code(3 DEC)model with tetrahedral blocks was built to capture the characteristics of roadway deformation,stress,and cracks.The results showed two failure patterns,layer bending fracture and layer slipping after excavation.The layer bending fracture occurred at positions where the normal direction of layers pointed to the inside of the roadway and the layer slipping occurred in the ribs.Six schemes were proposed to investigate the effects of layered soft rocks.The results showed that the deformation of ribs was obviously larger than that of the roof and floor when the roadway passed through three types of strata.When the roadway was completely in a coal seam,the change of deformation in ribs was not obvious,while the deformation in the roof and floor increased obviously.These results can provide guidance for excavation and support design of roadways in layered soft rocks.
基金Supported by the National Natural Science Foundation of China(51704324,41728004,U1762213)China National Science and Technology Major Project(2016ZX05061)
文摘The mechanical properties such as Young's modulus, hardness and fracture toughness of Lower Silurian Longmaxi shale samples from Youyang area in southeast Chongqing, China were investigated using dot matrix nanoindentation measurements. With the help of field emission scanning electron microscope(FESEM) and energy dispersive X-ray fluorescence spectroscopy(EDS), the indentation morphology and mineral composition in indentation area were quantitatively analyzed. According to mechanical strength classification, a micromechanical model with three components was introduced and the Mori-Tanaka model was used to upscale mechanical parameters from nano-scale to centimeter-size scale, which were further compared with uniaxial compression results. The experimental results show that there is a positive linear correlation between Young's modulus and hardness and between the Young's modulus and the fracture toughness under nano-scale; the Young's modulus, hardness and fracture toughness perpendicular to the bedding are slightly lower than those parallel with the bedding. According to data statistics, the mechanical properties at the nano-scale follow Weibull distribution feature and the dispersion degree of hardness results is the highest, which is mainly due to shale anisotropy and nanoindentation projection uncertainty. Comparing the results from nanoindentation test, with those from upscaling model and uniaxial compression test shows that the mechanical parameters at the nano-scale are higher than those from upscaling model and uniaxial compression test, which proves mechanical parameters at different scales have differences. It's because the larger the core, the more pores and internal weakness it contains, the less accurate the interpreted results of mechanical parameters will be.
基金the research grant supported by the State Key Laboratory Cultivation Base for Gas Geology and Gas Control(Henan Polytechnic University,China)(No.WS2020A01)。
文摘The lack of understanding of plastic hardening(softening)laws,especially under anisotropic stress conditions,results in inappropriate geotechnical management.Most of the yielding envelopes do not consider the effect of intermediate principal stress and the influence of Lode's angle.In addition,the application of plastic flow rules regarding yielding surfaces compromises the softening of rock internal friction as well as the influence of Lode's angle on the plastic potential.Moreover,the ductility to brittleness transition in the intermediate principal stress direction still requires a theoretical foundation.In this study,based on poly-axial testing results of Yunnan sandstone,we adopted a failure criterion with the intermediate principal stress proposed by Menétrey and Willam.The proposed new failure envelope was applied to capture the plastic evolution of rock samples.A plastic hardening-softening model is constructed,based on the framework of the plastic theory.The softening envelope is modified to better present the stress drop and considers the deterioration of rock internal friction in the post-peak stage of poly-axial loading.The differential of plastic potential according to the principal stresses is also modified,considering the rotation of Lode's angle in the poly-axial loading tests.The model results were compared with laboratory testing results,which showed great consistency across 9 different loading tests(5 under triaxial stress and 4 under poly-axial stress with 22 stress-strain curves in total).The induced brittleness by the intermediate principal stress is also well captured by the proposed model.
基金supported by the State Key Basic Research Project of China(No.2011CB201201)the National Natural Science Foundation of China(Nos.51134018 and 11172318)the Key Technologies R&D Program of China(No.2008BAB36B07)
文摘Coal-rock as a typical sedimentary rock has obvious stratification,namely it has transversely isotropic feature.Meanwhile,deformation leads to coal-rock mass having the characteristics of different porous and crack structures as well as local anisotropy.Equivalent axial and circumferential strain' formulas of the pure coal-rock mass specimen with a single crack were derived through the establishment of equivalent mechanical model of standard cylindrical coal-rock specimen,and have been widely used to a variety of media combined different structures containing multiple cracks.The complete stress strain curve of a real coal-rock specimen was obtained by the CTC test.Additionally,according to the comparison with the theoretical value,the theoretical mechanical model could well explain the deformation characteristics of coal-rock mass and verify its validity.Further,following features were analyzed:strain normalized coefficient and elastic modulus(Poisson's ratio) in vertical and parallel direction to the stratification,stratification angle,porosity,pore radius,normal and tangential stiffness of crack,and the relationship of different crack width with different tangential stiffness of crack.Through the analysis above,it substantiate this claim that the theoretical model with better reliability reflects the transversely isotropic nature of the coal-rock and the local anisotropy caused by the porous and cracks.
基金funded by the National Key Research and Development Plan(No.2022YFC3203200)Department of Science and Technology of Guangdong Province(No.2021ZT09G087)the National Natural Science Foundation Project of China(No.42167025).
文摘Complexities in mechanical behaviours of rock masses mainly stem from inherent discontinuities,which calls for advanced bolt-grouting techniques for stability enhancement.Understanding the mechanical properties of bolt-grouted fractured rock mass(BGFR)and developing accurate prediction methods are crucial to optimize the BGFR support strategies.This paper establishes a new elastoplastic(E-P)model based on the orthotropic and the Mohr-Coulomb(M-C)plastic-yielding criteria.The elastic parameters of the model were derived through a meso-mechanical analysis of composite materials mechanics(CMM).Laboratory BGFR specimens were prepared and uniaxial compression test and variable-angle shear test considering different bolt arrangements were carried out to obtain the mechanical parameters of the specimens.Results showed that the anisotropy of BGFR mainly depends on the relative volume content of each component material in a certain direction.Moreover,the mechanical parameters deduced from the theory of composite materials which consider the short fibre effect are shown to be in good agreement with those determined by laboratory experiments,and the variation rules maintained good consistency.Last,a case study of a real tunnel project is provided to highlight the effectiveness,validity and robustness of the developed E-P model in prediction of stresses and deformations.
基金supported by the National Key Research and Development Projects of China(No.2021YFB2600402)National Natural Science Foundation of China(Nos.52209148 and 52374119)+1 种基金the opening fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(No.SKLGME023023)the opening fund of Key Laboratory of Water Management and Water Security for Yellow River Basin,Ministry of Water Resources(No.2023-SYSJJ-02)。
文摘To better understand the failure behaviours and strength of bolt-reinforced blocky rocks,large scale extensive laboratory experiments are carried out on blocky rock-like specimens with and without rockbolt reinforcement.The results show that both shear failure and tensile failure along joint surfaces are observed but the shear failure is a main controlling factor for the peak strength of the rock mass with and without rockbolts.The rockbolts are necked and shear deformation simultaneously happens in bolt reinforced rock specimens.As the joint dip angle increases,the joint shear failure becomes more dominant.The number of rockbolts has a significant impact on the peak strain and uniaxial compressive strength(UCS),but little influence on the deformation modulus of the rock mass.Using the Winkler beam model to represent the rockbolt behaviours,an analytical model for the prediction of the strength of boltreinforced blocky rocks is proposed.Good agreement between the UCS values predicted by proposed model and obtained from experiments suggest an encouraging performance of the proposed model.In addition,the performance of the proposed model is further assessed using published results in the literature,indicating the proposed model can be used effectively in the prediction of UCS of bolt-reinforced blocky rocks.
基金Funded by National Natural Science Foundation of China(Grant No.41272296)
文摘Using the self-developed visualization test apparatus, centrifuge model tests at 20 g were carried out to research the macro and microscopic formation mechanism of coarse sand debris flows. The formation mode and soil-water interaction mechanism of the debris flows were analyzed from both macroscopic and microscopic points of view respectively using high digital imaging equipment and micro-structure analysis software Geodip. The test results indicate that the forming process of debris flow mainly consists of three stages, namely the infiltration and softening stage, the overall slide stage, and debris flow stage. The essence of simulated coarse sand slope forming debris flow is that local fluidization cause slope to wholly slide. The movement of small particles forms a transient stagnant layer with increasing saturation, causing soil shear strength lost and local fluidization. When the driving force of the saturated soil exceeds the resisting force, debris flow happens on the coarse sand slope immediately.