The joint of clay core-wall and concrete cut-off wall is one of the weakest parts in high earth and rockftll dams.A kind of highly plastic clay is always fixed on the joint to fit the large shear deformation between c...The joint of clay core-wall and concrete cut-off wall is one of the weakest parts in high earth and rockftll dams.A kind of highly plastic clay is always fixed on the joint to fit the large shear deformation between clay core-wall and concrete cut-offwall,so the hydro-mechanical coupling mechanisms on the joint under high stress,high hydraulic gradient,and large shear deformation are of great importance for the evaluation of dam safety.The hydro-mechanical coupling characteristics of the joint of the highly plastic clay and the concrete cut-off wall in a high earth and rockfill dam in China were studied by using a newly designed soil-structure contact erosion apparatus.The experimental results indicate that:1) Shear failure on the joint is due to the hydro-mechanical coupling effect of stress and seepage failure.The seepage failure will induce the final shear failure when the ratio of deviatoric stress to confining pressure is within 1.0-1.2; 2) A negative exponential permeability empirical model for the joint denoted by a newly defined principal stress function,which considers the coupling effect of confining pressure and axial pressure on the permeability,is established based on hydro-mechanical coupling experiments.3) The variation of the settlement before and after seepage failure is very different.The settlement before seepage failure changes very slowly,while it increases significantly after the seepage failure.4) The stress-strain relationship is of a strain softening type.5) Flow along the joint still follows Darcian flow rule.The results will provide an important theoretical basis for the further evaluation on the safety of the high earth and rockfill dam.展开更多
Based on fluid mechanics, thermodynamics and damage mechanics, thermal-hydro-mechanical (THM) coupling damage model of brittle rock is established by analyzing THM coupling mechanism, where THM coupling damage varia...Based on fluid mechanics, thermodynamics and damage mechanics, thermal-hydro-mechanical (THM) coupling damage model of brittle rock is established by analyzing THM coupling mechanism, where THM coupling damage variable DTHM is dominated by TH coupling damage variable DTH, TM coupling damage variable DTM and HM coupling damage variable DHM, and DTH is firstly expressed in term of dimensionless total thermal conductivity of the water Nu. Permeability test, uni-axial compression test and THM coupling test are conducted to measure the permeability, elastic modulus and THM coupling stress-strain curves of brittle rock. The tested values of THM coupling elastic modulus E'HM are in good agreement with the predicted values of THM coupling elastic modulus ETHM, which can verify the newly established THM coupling damage model.展开更多
De-icing technology has become an increasingly important subject in numerous applications in recent years.However,the direct numerical modeling and simulation the physical process of thermomechanical deicing is limite...De-icing technology has become an increasingly important subject in numerous applications in recent years.However,the direct numerical modeling and simulation the physical process of thermomechanical deicing is limited.This work is focusing on developing a numerical model and tool to direct simulate the de-icing process in the framework of the coupled thermo-mechanical peridynamics theory.Here,we adopted the fully coupled thermo-mechanical bond-based peridynamics(TM-BB-PD)method for modeling and simulation of de-icing.Within the framework of TM-BB-PD,the ice constitutive model is established by considering the influence of the temperature difference between two material points,and a modified failure criteria is proposed,which takes into account temperature effect to predict the damage of quasi-brittle ice material.Moreover,thermal boundary condition is used to simulate the thermal load in the de-icing process.By comparing with the experimental results and the previous reported finite element modeling,our numerical model shows good agreement with the previous predictions.Based on the numerical results,we find that the developed method can not only predict crack initiation and propagation in the ice,but also predict the temperature distribution and heat conduction during the de-icing process.Furthermore,the influence of the temperature for the ice crack growth pattern is discussed accordingly.In conclusion,the coupled thermal-mechanical peridynamics formulation with modified failure criterion is capable of providing a modeling tool for engineering applications of de-icing technology.展开更多
The influence of a magnetic field on the stability of a shaped charge jet is experimentally investigated at standoffs of 490,650 and 800 mm.The experimental results without and with the magnetic field are compared in ...The influence of a magnetic field on the stability of a shaped charge jet is experimentally investigated at standoffs of 490,650 and 800 mm.The experimental results without and with the magnetic field are compared in terms of the shaped charge jet form,stability and penetration ability.A theoretical model based on one-dimension fluid dynamics is then developed to assess the depth of penetration of the shaped charge at those three standoffs and magnetic conditions.The results show that the penetration capability can be enhanced in more than 70%by the magnetic field.The theoretical calculations are compared with the experimental results with reasonably good correlation.In addition,the parameters introduced in the theory are discussed together with the experiments at three standoffs studied.展开更多
基金Projects(51009053,51079039)supported by the National Natural Science Foundation of ChinaProject(20100094120004)supported by the Doctoral Program of Higher Education of China
文摘The joint of clay core-wall and concrete cut-off wall is one of the weakest parts in high earth and rockftll dams.A kind of highly plastic clay is always fixed on the joint to fit the large shear deformation between clay core-wall and concrete cut-offwall,so the hydro-mechanical coupling mechanisms on the joint under high stress,high hydraulic gradient,and large shear deformation are of great importance for the evaluation of dam safety.The hydro-mechanical coupling characteristics of the joint of the highly plastic clay and the concrete cut-off wall in a high earth and rockfill dam in China were studied by using a newly designed soil-structure contact erosion apparatus.The experimental results indicate that:1) Shear failure on the joint is due to the hydro-mechanical coupling effect of stress and seepage failure.The seepage failure will induce the final shear failure when the ratio of deviatoric stress to confining pressure is within 1.0-1.2; 2) A negative exponential permeability empirical model for the joint denoted by a newly defined principal stress function,which considers the coupling effect of confining pressure and axial pressure on the permeability,is established based on hydro-mechanical coupling experiments.3) The variation of the settlement before and after seepage failure is very different.The settlement before seepage failure changes very slowly,while it increases significantly after the seepage failure.4) The stress-strain relationship is of a strain softening type.5) Flow along the joint still follows Darcian flow rule.The results will provide an important theoretical basis for the further evaluation on the safety of the high earth and rockfill dam.
基金Project(11072269) supported by the National Natural Science Foundation of ChinaProject(20090162110066) supported by the Research Fund for the Doctoral Program of Higher Education of China
文摘Based on fluid mechanics, thermodynamics and damage mechanics, thermal-hydro-mechanical (THM) coupling damage model of brittle rock is established by analyzing THM coupling mechanism, where THM coupling damage variable DTHM is dominated by TH coupling damage variable DTH, TM coupling damage variable DTM and HM coupling damage variable DHM, and DTH is firstly expressed in term of dimensionless total thermal conductivity of the water Nu. Permeability test, uni-axial compression test and THM coupling test are conducted to measure the permeability, elastic modulus and THM coupling stress-strain curves of brittle rock. The tested values of THM coupling elastic modulus E'HM are in good agreement with the predicted values of THM coupling elastic modulus ETHM, which can verify the newly established THM coupling damage model.
基金the University of California at Berkeley.Ms.Y.Song gratefully acknowledges the financial support from the Chinese Scholar Council(CSC Grant No.201706680094).
文摘De-icing technology has become an increasingly important subject in numerous applications in recent years.However,the direct numerical modeling and simulation the physical process of thermomechanical deicing is limited.This work is focusing on developing a numerical model and tool to direct simulate the de-icing process in the framework of the coupled thermo-mechanical peridynamics theory.Here,we adopted the fully coupled thermo-mechanical bond-based peridynamics(TM-BB-PD)method for modeling and simulation of de-icing.Within the framework of TM-BB-PD,the ice constitutive model is established by considering the influence of the temperature difference between two material points,and a modified failure criteria is proposed,which takes into account temperature effect to predict the damage of quasi-brittle ice material.Moreover,thermal boundary condition is used to simulate the thermal load in the de-icing process.By comparing with the experimental results and the previous reported finite element modeling,our numerical model shows good agreement with the previous predictions.Based on the numerical results,we find that the developed method can not only predict crack initiation and propagation in the ice,but also predict the temperature distribution and heat conduction during the de-icing process.Furthermore,the influence of the temperature for the ice crack growth pattern is discussed accordingly.In conclusion,the coupled thermal-mechanical peridynamics formulation with modified failure criterion is capable of providing a modeling tool for engineering applications of de-icing technology.
基金National Natural Science Foundation of China(Grant No.11972196)Youth fund of Jiangsu Natural Science Foundation(Grant Nos.BK20190433)National Natural Science Funds for Distinguished Young Scholar of China(Grant No.11702144)to provide fund for conducting experiments.
文摘The influence of a magnetic field on the stability of a shaped charge jet is experimentally investigated at standoffs of 490,650 and 800 mm.The experimental results without and with the magnetic field are compared in terms of the shaped charge jet form,stability and penetration ability.A theoretical model based on one-dimension fluid dynamics is then developed to assess the depth of penetration of the shaped charge at those three standoffs and magnetic conditions.The results show that the penetration capability can be enhanced in more than 70%by the magnetic field.The theoretical calculations are compared with the experimental results with reasonably good correlation.In addition,the parameters introduced in the theory are discussed together with the experiments at three standoffs studied.