为解决在目标检测网络中使用特征融合方法带来的参数量大、计算复杂度高的问题,提出了一种融合无参注意力机制(SimAM)的特征融合方法。对动态蛇形卷积(DSConv)进行轻量化处理(Light-DSConv)。利用该结构自主学习目标几何形状的能力,对...为解决在目标检测网络中使用特征融合方法带来的参数量大、计算复杂度高的问题,提出了一种融合无参注意力机制(SimAM)的特征融合方法。对动态蛇形卷积(DSConv)进行轻量化处理(Light-DSConv)。利用该结构自主学习目标几何形状的能力,对小目标的特征进行二次提取。利用SimAM模块对特征图空间域的重要性进行划分并与通道域权重相结合,进一步提升模型性能。在Pascal VOC 2007测试集上测试融合模块的有效性。结果表明:轻量化后,单个DSConv结构参数量下降85.6%。模型平均精度(mean average precision,mAP)比基线模型增加了4.41%,比添加现有特征融合方法模型平均增加3.78%。所提出模块的参数量、计算量、检测速度与现阶段其它方法相比均具有一定优势。展开更多
文摘为解决在目标检测网络中使用特征融合方法带来的参数量大、计算复杂度高的问题,提出了一种融合无参注意力机制(SimAM)的特征融合方法。对动态蛇形卷积(DSConv)进行轻量化处理(Light-DSConv)。利用该结构自主学习目标几何形状的能力,对小目标的特征进行二次提取。利用SimAM模块对特征图空间域的重要性进行划分并与通道域权重相结合,进一步提升模型性能。在Pascal VOC 2007测试集上测试融合模块的有效性。结果表明:轻量化后,单个DSConv结构参数量下降85.6%。模型平均精度(mean average precision,mAP)比基线模型增加了4.41%,比添加现有特征融合方法模型平均增加3.78%。所提出模块的参数量、计算量、检测速度与现阶段其它方法相比均具有一定优势。