期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
基于MODWPT平方包络峭度谱的轴承声信号故障诊断方法 被引量:2
1
作者 李方烜 《铁道机车车辆》 北大核心 2024年第1期16-23,共8页
针对噪声干扰条件下的轴承声信号故障诊断问题,可以通过基于最大重叠离散小波包变换(MODWPT)的平方包络峭度谱法对轴承进行故障诊断。该方法首先对原始非平稳信号用MODWPT分解为若干个子频带分量之和,再对各子频带分量做平方包络峭度谱... 针对噪声干扰条件下的轴承声信号故障诊断问题,可以通过基于最大重叠离散小波包变换(MODWPT)的平方包络峭度谱法对轴承进行故障诊断。该方法首先对原始非平稳信号用MODWPT分解为若干个子频带分量之和,再对各子频带分量做平方包络峭度谱,快速定位原始非平稳信号当中冲击成分显著的频带范围,最后对目标频带做带通滤波并进行包络解调可得到故障诊断结果。通过实测轴承声信号数据验证,该方法可以有效地对轴承进行故障诊断。 展开更多
关键词 轴承 非平稳信号 最大重叠离散小波包变换 平方包络 峭度谱 故障诊断
在线阅读 下载PDF
基于MODWPT的Hilbert谱及其在齿轮故障诊断中的应用 被引量:4
2
作者 程军圣 杨宇 于德介 《振动与冲击》 EI CSCD 北大核心 2007年第11期41-44,共4页
在对基于最大重叠离散小波包变换(Maximal overlap discrete wavelet packet transform,简称MODWPT)的Hilbert谱方法进行介绍的基础上,将基于MODWPT的Hilbert谱应用于齿轮故障诊断当中。采用MOWDWPT可将多分量的复杂信号分解为若干个瞬... 在对基于最大重叠离散小波包变换(Maximal overlap discrete wavelet packet transform,简称MODWPT)的Hilbert谱方法进行介绍的基础上,将基于MODWPT的Hilbert谱应用于齿轮故障诊断当中。采用MOWDWPT可将多分量的复杂信号分解为若干个瞬时频率和瞬时幅值具有经典物理意义的单分量之和,然后求出各个单分量信号的瞬时频率和瞬时幅值,再进行组合便可以得到原始复杂信号完整的时频分布。对具有裂纹和断齿的齿轮故障振动信号的分析结果表明,基于MODWPT的Hilbert谱可以有效地提取齿轮振动信号的故障特征。 展开更多
关键词 最大重叠离散小波包变换 Hilbert谱 齿轮 故障诊断
在线阅读 下载PDF
基于MODWPT的包络阶次谱在滚动轴承故障诊断中的应用 被引量:1
3
作者 杨宇 杨丽湘 程军圣 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2010年第10期1380-1385,共6页
为了有效提取滚动轴承的故障特征,提出了基于MODWPT的包络阶次谱故障诊断方法.采用MODWPT将多分量的滚动轴承振动信号分解为若干个分量,对各个分量信号进行包络分析并对包络信号进行角域重采样;最后对重采样后的信号进行频谱分析,得到... 为了有效提取滚动轴承的故障特征,提出了基于MODWPT的包络阶次谱故障诊断方法.采用MODWPT将多分量的滚动轴承振动信号分解为若干个分量,对各个分量信号进行包络分析并对包络信号进行角域重采样;最后对重采样后的信号进行频谱分析,得到包络阶次谱,从而判断滚动轴承的工作状态和故障类型.采用该方法分别对仿真信号和实验信号进行了分析,结果表明了该方法的有效性. 展开更多
关键词 最大重叠离散小波包变换 阶次 包络谱 滚动轴承 故障诊断
在线阅读 下载PDF
基于单通道ECG信号与INFO-ABCLogitBoost模型的睡眠分期
4
作者 朱炳洋 吴建锋 +2 位作者 王柯 王章权 刘半藤 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第12期2547-2555,2585,共10页
为了减少对传统多导睡眠图(PSG)系统的依赖,基于单通道心电图(ECG)信号,设计了一种简单高效的睡眠分析算法.采用最大重叠离散小波变换(MODWT)对原始信号进行多分辨分析,再进一步提取峰值信息;根据峰值位置的一阶偏差,提取多维度的心率... 为了减少对传统多导睡眠图(PSG)系统的依赖,基于单通道心电图(ECG)信号,设计了一种简单高效的睡眠分析算法.采用最大重叠离散小波变换(MODWT)对原始信号进行多分辨分析,再进一步提取峰值信息;根据峰值位置的一阶偏差,提取多维度的心率变异性(HRV)特征.为了进一步筛选与不同睡眠阶段具有强关联性的HRV特征,提出基于ReliefF算法与Gini指数的特征提取方法.在此基础上,采用INFO-ABCLogitBoost方法挖掘HRV与不同睡眠阶段之间的关联性,从而实现睡眠阶段的精细分类.在实际公开数据集上的实验结果表明,所提出的模型在睡眠分期任务中,总体精度为83.67%,准确率为82.59%,Kappa系数为77.94%,F1-Score为82.97%.相比于睡眠分期任务中的常规模型,所提方法展现出更加高效便捷的睡眠质量评估性能,有助于实现家庭或移动医疗场景下的睡眠监测. 展开更多
关键词 睡眠分析 心电图(ECG) 最大重叠离散小波变换(MODWT) 心率变异性(HRV) INFO-ABCLogitBoost
在线阅读 下载PDF
基于广义解调时频分析的多分量信号分解方法 被引量:16
5
作者 程军圣 杨宇 于德介 《振动工程学报》 EI CSCD 北大核心 2007年第6期563-569,共7页
广义解调时频分析方法是一种新的信号处理方法,该方法将广义解调和最大重叠离散小波包变换相结合对复杂信号进行分解,得到若干个瞬时频率和瞬时幅值都具有物理意义的单分量信号,从而获得原始信号完整的时频分布。本文在介绍广义解调时... 广义解调时频分析方法是一种新的信号处理方法,该方法将广义解调和最大重叠离散小波包变换相结合对复杂信号进行分解,得到若干个瞬时频率和瞬时幅值都具有物理意义的单分量信号,从而获得原始信号完整的时频分布。本文在介绍广义解调时频分析方法的基础上,将该方法用于多分量信号的分析,对该方法进行了改进,给出了由改进的广义解调时频分析方法分解多分量信号的具体步骤,从而由改进后的广义解调时频分析方法不仅可以得到原始信号中各个分量的时域波形,而且还可以得到相同的时频分布。采用改进后的广义解调时频分析方法对仿真信号进行了分析,同时和其它时频分析方法进行了比较,结果表明了该方法的有效性。最后,对广义解调时频分析方法中的相位函数选择问题进行了讨论。 展开更多
关键词 广义解调 时频分析 最大重叠离散小波包变换 多分量信号 分解
在线阅读 下载PDF
基于改进阈值函数的小波去噪算法研究 被引量:15
6
作者 代海波 单锐 +1 位作者 王换鹏 张雁 《噪声与振动控制》 CSCD 2012年第6期189-193,共5页
针对用小波变换进行信号去噪的阈值函数设定问题,在传统软、硬阈值函数去噪的基础上,提出一种改进的阈值函数方法,并与极大重叠离散小波包变换相结合,从而得到一种改进阈值函数的小波去噪方法。Matlab仿真结果表明:去噪方法提高了重构... 针对用小波变换进行信号去噪的阈值函数设定问题,在传统软、硬阈值函数去噪的基础上,提出一种改进的阈值函数方法,并与极大重叠离散小波包变换相结合,从而得到一种改进阈值函数的小波去噪方法。Matlab仿真结果表明:去噪方法提高了重构信号的信噪比,有效除去噪声,且保留原始信号的细节特征,是一种较好的信号消噪方法,在股票去噪中具有较高的实用价值。 展开更多
关键词 声学 改进阈值函数 极大重叠离散小波包变换 小波去噪 噪声滤波
在线阅读 下载PDF
用最大重叠离散小波包变换的Hilbert谱时频分析 被引量:6
7
作者 杨宇 何怡刚 +1 位作者 程军圣 于德介 《振动.测试与诊断》 EI CSCD 北大核心 2009年第1期10-13,共4页
在介绍基于最大重叠离散小波包变换(Maximal Overlap Discrete Wavelet Packet Transform,简称MODWPT)的Hilbert谱方法的基础上,将基于MODWPT的Hilbert谱应用于非平稳信号的分析。采用MODWPT可将多分量的复杂信号分解为若干个瞬时频率... 在介绍基于最大重叠离散小波包变换(Maximal Overlap Discrete Wavelet Packet Transform,简称MODWPT)的Hilbert谱方法的基础上,将基于MODWPT的Hilbert谱应用于非平稳信号的分析。采用MODWPT可将多分量的复杂信号分解为若干个瞬时频率和瞬时幅值都具有经典物理意义的分量之和,求出各个单分量信号的瞬时频率和瞬时幅值,再进行组合得到原始复杂信号完整的时频分布。对基于MODWPT和基于经验模态分解(Empirical Mode Decomposition,简称EMD)的Hilbert谱,在不同类型非平稳信号下的时频分析效果进行了比较和分析,结果表明了基于MODWPT的Hilbert谱分析方法的有效性。 展开更多
关键词 非平稳信号 最大重叠离散小波包变换 Hilbert谱 时频分析
在线阅读 下载PDF
广义解调时频分析方法在调制信号处理中的应用 被引量:4
8
作者 杨宇 程军圣 +1 位作者 于德介 何怡刚 《振动与冲击》 EI CSCD 北大核心 2007年第8期13-16,共4页
介绍了一种新的信号处理方法-基于广义解调的时频分析方法,并将这种方法应用于调制信号的处理。广义解调时频分析方法采用广义解调将时频分布是曲线的信号变换为时频分布是平行于时间坐标轴的直线的信号,然后采用最大重叠离散小波包变换... 介绍了一种新的信号处理方法-基于广义解调的时频分析方法,并将这种方法应用于调制信号的处理。广义解调时频分析方法采用广义解调将时频分布是曲线的信号变换为时频分布是平行于时间坐标轴的直线的信号,然后采用最大重叠离散小波包变换(Maximal overlap discrete wavelet packet transform,简称MODWPT)对广义解调后的信号进行分解,得到若干个瞬时频率和瞬时幅值都具有物理意义的单分量信号,再对各个单分量信号进行逆广义解调,进一步求出瞬时频率和瞬时幅值,从而得到原始信号完整的时频分布。采用广义解调时频分析方法对调幅-调频信号进行了分析,结果表明该方法能有效地提取调幅-调频信号的调制信息。 展开更多
关键词 广义解调 时频分析 最大重叠离散小波包变换 调制信号
在线阅读 下载PDF
基于变分模态分解和最大重叠离散小波包变换的齿轮信号去噪方法 被引量:32
9
作者 周小龙 徐鑫莉 +3 位作者 王尧 刘薇娜 姜振海 马风雷 《振动与冲击》 EI CSCD 北大核心 2021年第12期265-274,289,共11页
针对齿轮故障信号易受噪声干扰导致故障特征难以提取的问题,提出一种基于变分模态分解(variational mode decomposition,VMD)和最大重叠离散小波包变换(maximal overlap discrete wavelet packet transform,MODWPT)相结合的信号去噪方... 针对齿轮故障信号易受噪声干扰导致故障特征难以提取的问题,提出一种基于变分模态分解(variational mode decomposition,VMD)和最大重叠离散小波包变换(maximal overlap discrete wavelet packet transform,MODWPT)相结合的信号去噪方法。采用VMD方法将齿轮振动信号分解成一系列不同中心频率的固有模态函数(intrinsic mode function,IMF),对VMD分解过程中影响其精度的主要参数选择方法进行了探究,提出相关参数的选取依据。结合能量熵增量-频域互相关系数准则以剔除分解出的高频噪声和虚假干扰成分;采用MODWPT方法对包含高频噪声的IMF分量进行去噪,以进一步提升信号的去噪效果和性能指标;最后将去噪后高频IMF分量同表征信号自身特征的敏感模态分量重构为去噪信号。通过仿真信号和齿轮断齿故障信号的分析,证明了所提方法的有效性和实用性。 展开更多
关键词 变分模态分解 最大重叠离散小波包变换 去噪 齿轮 特征提取
在线阅读 下载PDF
基于并行隐马尔科夫模型的电能质量扰动事件分类 被引量:18
10
作者 谢善益 肖斐 +1 位作者 艾芊 周刚 《电力系统保护与控制》 EI CSCD 北大核心 2019年第2期80-86,共7页
为满足电能质量扰动准确分类的需求,提出了一种基于极大重叠离散小波变换(MaximalOverlapDiscrete WaveletTransform, MODWT)和并行隐马尔科夫模型(ParallelHiddenMarkovModel, PHMM)的电能质量扰动分类方法。首先利用MODWT提出一种实... 为满足电能质量扰动准确分类的需求,提出了一种基于极大重叠离散小波变换(MaximalOverlapDiscrete WaveletTransform, MODWT)和并行隐马尔科夫模型(ParallelHiddenMarkovModel, PHMM)的电能质量扰动分类方法。首先利用MODWT提出一种实用的电能质量扰动检测算法,该算法无需设定检测阈值,可准确获取扰动时段的起止时刻。接着提取扰动时段的电压谐波成分并组成特征向量。然后用PHMM分类器对扰动信号进行分类识别。PHMM方法克服了人工神经网络方法收敛性较差、训练时间较长的缺陷,使分类器性能大大提升。通过应用于现场实测扰动数据表明,所提出的方法适用于多种类型的电能质量扰动检测,分类正确率高,训练速度快,具有良好的应用价值。 展开更多
关键词 电能质量 极大重叠离散小波变换 并行隐马尔科夫模型 分类识别
在线阅读 下载PDF
结合小波变换与数学形态学的电缆局放信号识别与降噪方法 被引量:3
11
作者 杨翠茹 彭向阳 余欣 《沈阳工业大学学报》 CAS 北大核心 2023年第6期619-624,共6页
针对大部分电缆局放(PD)信号识别方法在噪声影响下的识别准确率低、波形失真等问题,提出了一种基于小波变换与数学形态学的电缆PD信号识别及降噪方法。该方法利用最大重叠离散小波变换提取PD信号的高频和低频特征,结合重构和数学形态法... 针对大部分电缆局放(PD)信号识别方法在噪声影响下的识别准确率低、波形失真等问题,提出了一种基于小波变换与数学形态学的电缆PD信号识别及降噪方法。该方法利用最大重叠离散小波变换提取PD信号的高频和低频特征,结合重构和数学形态法滤除噪声。利用自适应神经网络学习小波变换后的特征,最终完成PD信号的识别分类。基于某变电站实测PD信号波形对所提方法进行实验分析结果表明,信号降噪处理后的信噪比与均方误差分别为5.439 dB、0.251,且整体的识别准确率超过了88%,均优于其他对比方法,具有良好的应用前景。 展开更多
关键词 电缆局放信号 信号识别 信号降噪 最大重叠离散小波变换 数学形态学 自适应神经网络 白噪声 脉冲噪声
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部