期刊文献+
共找到1,450篇文章
< 1 2 73 >
每页显示 20 50 100
Studies on unfolding energy spectra of neutrons using maximumlikelihood expectation–maximization method 被引量:3
1
作者 Mehrdad Shahmohammadi Beni D.Krstic +1 位作者 D.Nikezic K.N.Yu 《Nuclear Science and Techniques》 SCIE CAS CSCD 2019年第9期24-33,共10页
Energy spectra of neutrons are important for identification of unknown neutron sources and for determination of the equivalent dose. Although standard energy spectra of neutrons are available in some situations, e.g.,... Energy spectra of neutrons are important for identification of unknown neutron sources and for determination of the equivalent dose. Although standard energy spectra of neutrons are available in some situations, e.g., for some radiotherapy treatment machines, they are unknown in other cases, e.g., for photoneutrons created in radiotherapy rooms and neutrons generated in nuclear reactors. In situations where neutron energy spectra need to be determined, unfolding the required neutron energy spectra using the Bonner sphere spectrometer (BSS) and nested neutron spectrometer (NNS) has been found promising. However, without any prior knowledge on the spectra, the unfolding process has remained a tedious task. In this work, a standalone numerical tool named ‘‘NRUunfold’’ was developed which could satisfactorily unfold neutron spectra for BSS or NNS, or any other systems using similar detection methodology. A generic and versatile algorithm based on maximum-likelihood expectation– maximization method was developed and benchmarked against the widely used STAY’SL algorithm which was based on the least squares method. The present method could output decent results in the absence of precisely calculated initial guess, although it was also remarked that employment of exceptionally bizarre initial spectra could lead to some unreasonable output spectra. The neutron count rates computed using the manufacturer’s response functions were used for sensitivity studies. The present NRUunfold code could be useful for neutron energy spectrum unfolding for BSS or NNS applications in the absence of a precisely calculated initial guess. 展开更多
关键词 NEUTRON spectrometry maximum-likelihood expectation–maximization Nested NEUTRON spectrometer
在线阅读 下载PDF
EXACT MAXIMUM LIKELIHOOD ESTIMATOR FOR DRIFT FRACTIONAL BROWNIAN MOTION AT DISCRETE OBSERVATION 被引量:5
2
作者 胡耀忠 Nualart David +1 位作者 肖炜麟 张卫国 《Acta Mathematica Scientia》 SCIE CSCD 2011年第5期1851-1859,共9页
This paper deals with the problems of consistency and strong consistency of the maximum likelihood estimators of the mean and variance of the drift fractional Brownian motions observed at discrete time instants. Both ... This paper deals with the problems of consistency and strong consistency of the maximum likelihood estimators of the mean and variance of the drift fractional Brownian motions observed at discrete time instants. Both the central limit theorem and the Berry-Ess′een bounds for these estimators are obtained by using the Stein’s method via Malliavin calculus. 展开更多
关键词 maximum likelihood estimator fractional Brownian motions strong consistency central limit theorem Berry-Ess′een bounds Stein’s method Malliavin calculus
在线阅读 下载PDF
Heuristic techniques for maximum likelihood localization of radioactive sources via a sensor network 被引量:1
3
作者 Assem Abdelhakim 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第8期174-193,共20页
Maximum likelihood estimation(MLE)is an effective method for localizing radioactive sources in a given area.However,it requires an exhaustive search for parameter estimation,which is time-consuming.In this study,heuri... Maximum likelihood estimation(MLE)is an effective method for localizing radioactive sources in a given area.However,it requires an exhaustive search for parameter estimation,which is time-consuming.In this study,heuristic techniques were employed to search for radiation source parameters that provide the maximum likelihood by using a network of sensors.Hence,the time consumption of MLE would be effectively reduced.First,the radiation source was detected using the k-sigma method.Subsequently,the MLE was applied for parameter estimation using the readings and positions of the detectors that have detected the radiation source.A comparative study was performed in which the estimation accuracy and time consump-tion of the MLE were evaluated for traditional methods and heuristic techniques.The traditional MLE was performed via a grid search method using fixed and multiple resolutions.Additionally,four commonly used heuristic algorithms were applied:the firefly algorithm(FFA),particle swarm optimization(PSO),ant colony optimization(ACO),and artificial bee colony(ABC).The experiment was conducted using real data collected by the Low Scatter Irradiator facility at the Savannah River National Laboratory as part of the Intelligent Radiation Sensing System program.The comparative study showed that the estimation time was 3.27 s using fixed resolution MLE and 0.59 s using multi-resolution MLE.The time consumption for the heuristic-based MLE was 0.75,0.03,0.02,and 0.059 s for FFA,PSO,ACO,and ABC,respectively.The location estimation error was approximately 0.4 m using either the grid search-based MLE or the heuristic-based MLE.Hence,heuristic-based MLE can provide comparable estimation accuracy through a less time-consuming process than traditional MLE. 展开更多
关键词 Radioactive source maximum likelihood estimation Multi-resolution mlE k-sigma Firefly algorithm Particle swarm optimization Ant colony optimization Artificial bee colony
在线阅读 下载PDF
The study of a neutron spectrum unfolding method based on particle swarm optimization combined with maximum likelihood expectation maximization 被引量:1
4
作者 Hong-Fei Xiao Qing-Xian Zhang +5 位作者 He-Yi Tan Bin Shi Jun Chen Zhi-Qiang Cheng Jian Zhang Rui Yang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第4期149-160,共12页
The neutron spectrum unfolding by Bonner sphere spectrometer(BSS) is considered a complex multidimensional model,which requires complex mathematical methods to solve the first kind of Fredholm integral equation. In or... The neutron spectrum unfolding by Bonner sphere spectrometer(BSS) is considered a complex multidimensional model,which requires complex mathematical methods to solve the first kind of Fredholm integral equation. In order to solve the problem of the maximum likelihood expectation maximization(MLEM) algorithm which is easy to suffer the pitfalls of local optima and the particle swarm optimization(PSO) algorithm which is easy to get unreasonable flight direction and step length of particles, which leads to the invalid iteration and affect efficiency and accuracy, an improved PSO-MLEM algorithm, combined of PSO and MLEM algorithm, is proposed for neutron spectrum unfolding. The dynamic acceleration factor is used to balance the ability of global and local search, and improves the convergence speed and accuracy of the algorithm. Firstly, the Monte Carlo method was used to simulated the BSS to obtain the response function and count rates of BSS. In the simulation of count rate, four reference spectra from the IAEA Technical Report Series No. 403 were used as input parameters of the Monte Carlo method. The PSO-MLEM algorithm was used to unfold the neutron spectrum of the simulated data and was verified by the difference of the unfolded spectrum to the reference spectrum. Finally, the 252Cf neutron source was measured by BSS, and the PSO-MLEM algorithm was used to unfold the experimental neutron spectrum.Compared with maximum entropy deconvolution(MAXED), PSO and MLEM algorithm, the PSO-MLEM algorithm has fewer parameters and automatically adjusts the dynamic acceleration factor to solve the problem of local optima. The convergence speed of the PSO-MLEM algorithm is 1.4 times and 3.1 times that of the MLEM and PSO algorithms. Compared with PSO, MLEM and MAXED, the correlation coefficients of PSO-MLEM algorithm are increased by 33.1%, 33.5% and 1.9%, and the relative mean errors are decreased by 98.2%, 97.8% and 67.4%. 展开更多
关键词 Particle swarm optimization maximum likelihood expectation maximization Neutron spectrum unfolding Bonner spheres spectrometer Monte Carlo method
在线阅读 下载PDF
Improving Accuracy of Estimating Two-Qubit States with Hedged Maximum Likelihood 被引量:1
5
作者 殷琪 项国勇 +1 位作者 李传锋 郭光灿 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第3期1-5,共5页
As a widely used reconstruction algorithm in quantum state tomography, maximum likelihood estimation tends to assign a rank-deficient matrix, which decreases estimation accuracy for certain quantum states. Fortunately... As a widely used reconstruction algorithm in quantum state tomography, maximum likelihood estimation tends to assign a rank-deficient matrix, which decreases estimation accuracy for certain quantum states. Fortunately, hedged maximum likelihood estimation (HMLE) [Phys. Rev. Lett. 105 (2010)200504] was proposed to avoid this problem. Here we study more details about this proposal in the two-qubit case and further improve its performance. We ameliorate the HMLE method by updating the hedging function based on the purity of the estimated state. Both performances of HMLE and ameliorated HMLE are demonstrated by numerical simulation and experimental implementation on the Werner states of polarization-entangled photons. 展开更多
关键词 mlE Improving Accuracy of Estimating Two-Qubit States with Hedged maximum likelihood
在线阅读 下载PDF
Comparisons of Maximum Likelihood Estimates and Bayesian Estimates for the Discretized Discovery Process Model
6
作者 GaoChunwen XuJingzhen RichardSinding-Larsen 《Petroleum Science》 SCIE CAS CSCD 2005年第2期45-56,共12页
A Bayesian approach using Markov chain Monte Carlo algorithms has been developed to analyze Smith’s discretized version of the discovery process model. It avoids the problems involved in the maximum likelihood method... A Bayesian approach using Markov chain Monte Carlo algorithms has been developed to analyze Smith’s discretized version of the discovery process model. It avoids the problems involved in the maximum likelihood method by effectively making use of the information from the prior distribution and that from the discovery sequence according to posterior probabilities. All statistical inferences about the parameters of the model and total resources can be quantified by drawing samples directly from the joint posterior distribution. In addition, statistical errors of the samples can be easily assessed and the convergence properties can be monitored during the sampling. Because the information contained in a discovery sequence is not enough to estimate all parameters, especially the number of fields, geologically justified prior information is crucial to the estimation. The Bayesian approach allows the analyst to specify his subjective estimates of the required parameters and his degree of uncertainty about the estimates in a clearly identified fashion throughout the analysis. As an example, this approach is applied to the same data of the North Sea on which Smith demonstrated his maximum likelihood method. For this case, the Bayesian approach has really improved the overly pessimistic results and downward bias of the maximum likelihood procedure. 展开更多
关键词 Bayesian estimate maximum likelihood estimate discovery process model Markov chain Monte Carlo (MCMC) North Sea
在线阅读 下载PDF
Convergence Diagnostics for Gibbs Sampler via Maximum Likelihood Estimation
7
作者 程杞元 林秀光 《Journal of Beijing Institute of Technology》 EI CAS 2003年第2期212-215,共4页
A diagnostic procedure based on maximum likelihood estimation, to study the convergence of the Markov chain produced by Gibbs sampler, is presented. The unbiasedness, consistent and asymptotic normality are considered... A diagnostic procedure based on maximum likelihood estimation, to study the convergence of the Markov chain produced by Gibbs sampler, is presented. The unbiasedness, consistent and asymptotic normality are considered for the estimation of the parameters produced by the procedure. An example is provided to illustrate the procedure, and the numerical result is consistent with the theoretical one. 展开更多
关键词 Markov chain Monte Carlo Gibbs sampler maximum likelihood estimation
在线阅读 下载PDF
基于PSO和MLEM混合算法的NDP测量反演算法研究
8
作者 李远辉 杨芮 +4 位作者 张庆贤 肖才锦 陈弘杰 肖鸿飞 程志强 《原子能科学技术》 EI CAS CSCD 北大核心 2024年第5期1152-1159,共8页
中子深度剖面(NDP)分析技术是一种无损检测方法,能够同时测量样品中目标核素的浓度与空间信息,已被广泛应用于锂电池、半导体等产业。在NDP分析过程中,由测量能谱反演出目标核素浓度的分布信息是关键步骤。目前NDP测量反演中常用的算法... 中子深度剖面(NDP)分析技术是一种无损检测方法,能够同时测量样品中目标核素的浓度与空间信息,已被广泛应用于锂电池、半导体等产业。在NDP分析过程中,由测量能谱反演出目标核素浓度的分布信息是关键步骤。目前NDP测量反演中常用的算法为最大似然期望最大化(MLEM)算法。针对MLEM算法计算结果易陷入局部最优解的情况,本文提出了粒子群(PSO)与MLEM混合(PSO-MLEM)算法,并通过动态加速因子提高了算法的收敛速度与计算精度。应用PSO-MLEM算法、PSO算法、MLEM算法、奇异值分解求解最小二乘(SVDLS)算法对锂电池中^(6)Li的NDP模拟能谱进行反演,并对反演计算结果进行了评价。结果表明:对比PSO算法,PSO-MLEM算法的收敛效率与计算精度明显提升;对比MLEM算法,PSO-MLEM算法的全局寻优能力有效提升了反演精度,避免了局部最优解的影响;对比SVDLS算法,PSO-MLEM算法的反演精度明显提升。 展开更多
关键词 中子深度剖面分析 粒子群算法 最大似然期望最大化算法 锂电池
在线阅读 下载PDF
基于ML和L2范数的视频目标跟踪算法 被引量:10
9
作者 姜明新 王洪玉 +1 位作者 王洁 王彪 《电子学报》 EI CAS CSCD 北大核心 2013年第11期2307-2313,共7页
目标跟踪是计算机视觉领域的一个具有挑战性的问题,本文提出了一种基于ML(最大似然)估计和L2范数的视频目标跟踪算法.建立基于稀疏限制的ML模型,给样本中的异常像素分配较小的权值,减少异常像素对跟踪算法的影响.利用L2范数最小化进行... 目标跟踪是计算机视觉领域的一个具有挑战性的问题,本文提出了一种基于ML(最大似然)估计和L2范数的视频目标跟踪算法.建立基于稀疏限制的ML模型,给样本中的异常像素分配较小的权值,减少异常像素对跟踪算法的影响.利用L2范数最小化进行稀疏编码求解.采用贝叶斯估计得出目标跟踪结果.与其他典型算法相比,本算法降低了计算的复杂度,对遮挡,旋转,尺度变化,光照变化等异常变化具有较强的鲁棒性. 展开更多
关键词 稀疏限制 最大似然 L2范数最小化 贝叶斯MAP估计
在线阅读 下载PDF
基于ML-II方法的k/n-系统Bayes可靠性评估 被引量:2
10
作者 程皖民 冯静 +1 位作者 周经伦 孙权 《电光与控制》 北大核心 2007年第1期22-24,共3页
n中取k系统(简称k/n-系统)是工程实践中应用最广泛的系统类型之一。为了在系统现场试验样本量很小的情况下进行可靠性评估,首先利用次序统计量推导了k/n-系统寿命分布的密度函数,并给出了模型参数的第二类极大似然估计(ML-Ⅱ估计);然后... n中取k系统(简称k/n-系统)是工程实践中应用最广泛的系统类型之一。为了在系统现场试验样本量很小的情况下进行可靠性评估,首先利用次序统计量推导了k/n-系统寿命分布的密度函数,并给出了模型参数的第二类极大似然估计(ML-Ⅱ估计);然后给出了k/n-系统Bayes可靠性评估的一般步骤;仿真实例表明了方法的可行性。 展开更多
关键词 可靠性评估 k/n-系统 BAYES 次序统计量 第二类极大似然估计
在线阅读 下载PDF
基于ML-PDA算法的低可见目标跟踪研究 被引量:2
11
作者 齐立峰 惠小平 《弹箭与制导学报》 CSCD 北大核心 2014年第1期27-32,共6页
针对利用传统算法难以跟踪低空目标的问题,提出了一种可行的跟踪低空目标的最大似然-概率数据关联(ML-PDA)算法。在分析各种低空目标特性的基础上,首先建立了基于ML-PDA滤波算法的低空目标跟踪模型,然后对该模型进行了深入分析,最后通... 针对利用传统算法难以跟踪低空目标的问题,提出了一种可行的跟踪低空目标的最大似然-概率数据关联(ML-PDA)算法。在分析各种低空目标特性的基础上,首先建立了基于ML-PDA滤波算法的低空目标跟踪模型,然后对该模型进行了深入分析,最后通过计算机仿真对该模型进行了验证。结果表明:ML-PDA滤波算法对低空目标跟踪十分有效,并且提高了滤波实时性,具有较好的工程应用前景。 展开更多
关键词 低可见目标 目标跟踪 最大似然估计 概率数据关联
在线阅读 下载PDF
TH-UWB系统中ML信道估计算法研究 被引量:2
12
作者 齐丽娜 朱洪波 《中国电子科学研究院学报》 2007年第1期47-51,共5页
跳时超宽带无线通信系统中信道估计的准确度对系统接收性能具有重要影响,首先对超宽带系统收发模型进行介绍,然后对TH-UWB系统中基于训练序列的非结构化最大似然信道估计算法进行分析,最后在超宽带信道模型下对估计算法性能进行仿真。... 跳时超宽带无线通信系统中信道估计的准确度对系统接收性能具有重要影响,首先对超宽带系统收发模型进行介绍,然后对TH-UWB系统中基于训练序列的非结构化最大似然信道估计算法进行分析,最后在超宽带信道模型下对估计算法性能进行仿真。仿真结果表明基于训练序列的非结构化最大似然信道估计算法能够有效估计出信道参数。 展开更多
关键词 跳时超宽带 RAKE接收机 信道估计 最大似然准则
在线阅读 下载PDF
基于MLE阈值规则的小波特征提取技术在气阀故障诊断中的应用 被引量:9
13
作者 魏中青 马波 +2 位作者 窦远 江志农 马日红 《振动与冲击》 EI CSCD 北大核心 2011年第1期237-241,共5页
气阀故障是往复压缩机最常见的故障类型之一,占故障总数的60%以上,如果不及时发现并解决,往复压缩机的压缩效率将大大降低。针对目前往复压缩机气阀故障诊断中存在的问题,结合小波降噪技术,提出了采用基于最大似然估计(MLE:Maximum Like... 气阀故障是往复压缩机最常见的故障类型之一,占故障总数的60%以上,如果不及时发现并解决,往复压缩机的压缩效率将大大降低。针对目前往复压缩机气阀故障诊断中存在的问题,结合小波降噪技术,提出了采用基于最大似然估计(MLE:Maximum Likelihood Estimation)阈值规则对气阀早期故障弱冲击变化信号进行特征提取的方法,实现了气阀故障的早期预警。 展开更多
关键词 气阀 故障诊断 最大似然估计 特征提取 往复压缩机
在线阅读 下载PDF
基于ML-Ⅱ的指数分布可靠性多层Bayes估计 被引量:3
14
作者 李湘宁 《现代防御技术》 北大核心 2012年第4期80-83,共4页
Bayes估计法是可靠性评估中应用最为广泛的方法之一,指数分布的Bayes验前概率密度函数中的重要参数主要依靠Reformulation法和Box-Tiao法确定,具有较强的主观经验性。基于Beyes估计的基本思想,以试验数据为依据,利用第二类极大似然估计... Bayes估计法是可靠性评估中应用最为广泛的方法之一,指数分布的Bayes验前概率密度函数中的重要参数主要依靠Reformulation法和Box-Tiao法确定,具有较强的主观经验性。基于Beyes估计的基本思想,以试验数据为依据,利用第二类极大似然估计法(ML-Ⅱ估计法)确定Bayes方法中的相关参数,避免了参数确定的主观性。实例表明结果合理,方法客观、可行。 展开更多
关键词 多层BAYES估计 第二类极大似然估计 可靠性评估
在线阅读 下载PDF
MTDFREML法估计大白母猪繁殖性状的遗传参数 被引量:10
15
作者 何俊 施启顺 +2 位作者 张达军 唐凡 柳小春 《湖南农业大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第1期61-64,共4页
运用多性状非求导约束最大似然法(multiple traits derivative free restricted maximum likelihood,MTDFREML),对湖南正虹种猪场和益阳市农科所种猪场(益农种猪场)大白母猪1998-2004年的共7 736胎次的繁殖性状育种记录进行遗传参数估... 运用多性状非求导约束最大似然法(multiple traits derivative free restricted maximum likelihood,MTDFREML),对湖南正虹种猪场和益阳市农科所种猪场(益农种猪场)大白母猪1998-2004年的共7 736胎次的繁殖性状育种记录进行遗传参数估计.2个猪场繁殖母猪的总产仔数(TNB)、产活仔数(NBA)、初生窝重(LWB)和21日龄窝重(LW21)的遗传力分别为0.23,0.18,0.21,0.27,母体遗传效应占表型方差百分率为0.09~0.15,窝效应占表型方差百分率为0.08~0.38.繁殖性状间遗传相关为0.37~0.78,永久环境相关为0.80~0.93,表型相关为0.32~0.88. 展开更多
关键词 大白母猪 繁殖性状 多性状非求导约束最大似然法 遗传力 遗传相关
在线阅读 下载PDF
具有Rao简单结构的多元t-模型的MLE及其精确分布 被引量:3
16
作者 邹清明 王静龙 朱仲义 《应用概率统计》 CSCD 北大核心 2009年第4期398-408,共11页
探求模型中未知参数的估计及其分布一直是统计学研究中的感兴趣的问题.本文研究了具有Rao简单结构多元t-模型的极大似然估计,利用条件分布方法,获得了其精确分布.
关键词 极大似然估计 RAO简单结构 条件分布 t-模型
在线阅读 下载PDF
LGM模型中缺失数据处理方法的比较:ML方法与Diggle-Kenward选择模型 被引量:3
17
作者 张杉杉 陈楠 刘红云 《心理学报》 CSSCI CSCD 北大核心 2017年第5期699-710,共12页
追踪研究中缺失数据十分常见。本文通过Monte Carlo模拟研究,考察基于不同前提假设的Diggle-Kenward选择模型和ML方法对增长参数估计精度的差异,并考虑样本量、缺失比例、目标变量分布形态以及不同缺失机制的影响。结果表明:(1)缺失机... 追踪研究中缺失数据十分常见。本文通过Monte Carlo模拟研究,考察基于不同前提假设的Diggle-Kenward选择模型和ML方法对增长参数估计精度的差异,并考虑样本量、缺失比例、目标变量分布形态以及不同缺失机制的影响。结果表明:(1)缺失机制对基于MAR的ML方法有较大的影响,在MNAR缺失机制下,基于MAR的ML方法对LGM模型中截距均值和斜率均值的估计不具有稳健性。(2)DiggleKenward选择模型更容易受到目标变量分布偏态程度的影响,样本量与偏态程度存在交互作用,样本量较大时,偏态程度的影响会减弱。而ML方法仅在MNAR机制下轻微受到偏态程度的影响。 展开更多
关键词 潜变量增长模型 非随机缺失机制 Diggle-Kenward选择模型 极大似然方法
在线阅读 下载PDF
IRCT下对数正态和正态分布参数的MLE 被引量:13
18
作者 陈怡南 叶尔骅 《南京航空航天大学学报》 CAS CSCD 1996年第3期376-381,共6页
在文[1-4]的基础上进一步研究了带有不完全信息的随机截尾试验模型(IRCT)。着重讨论了对数正态分布参数的统计分析问题,建立了参数所满足的似然方程组,给出并证明了似然方程组解即参数的极大似然估计(MLE)的存在唯一... 在文[1-4]的基础上进一步研究了带有不完全信息的随机截尾试验模型(IRCT)。着重讨论了对数正态分布参数的统计分析问题,建立了参数所满足的似然方程组,给出并证明了似然方程组解即参数的极大似然估计(MLE)的存在唯一性定理,所得的结论对于正态分布也同样适用。文末给出了随机模拟数值解例子,结果表明,参数的MLE具有较高的精度。 展开更多
关键词 统计分布 正态分布 随机截尾 试验模型
在线阅读 下载PDF
基于ML估计的高效OFDM整数倍频偏估计算法 被引量:1
19
作者 赵林靖 李建东 陈晨 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2005年第4期559-561,565,共4页
针对整数倍频偏会造成OFDM码元序列的循环移位而导致系统性能下降的问题,提出一种新的OFDM整数倍频偏的频域估计算法.利用一个OFDM码元中各子载波上数据符号之间的差分关系和最大似然(ML)估计理论,导出了该整数倍频偏的ML估计器的估计公... 针对整数倍频偏会造成OFDM码元序列的循环移位而导致系统性能下降的问题,提出一种新的OFDM整数倍频偏的频域估计算法.利用一个OFDM码元中各子载波上数据符号之间的差分关系和最大似然(ML)估计理论,导出了该整数倍频偏的ML估计器的估计公式.新算法在不增加算法复杂度的条件下,频偏估计性能优于传统方法. 展开更多
关键词 OFDM 整数倍频偏 频域 最大似然估计
在线阅读 下载PDF
MIMO场景下最小误差检测
20
作者 许天一 邹辉 《科技创新与应用》 2025年第6期43-47,共5页
该文研究多输入多输出(Multiple-Input Multiple-Output,MIMO)场景下的最小均方误差(MMSE)检测方法,旨在提升无线通信系统中的信号检测性能。通过仿真实验,在不同收发天线配置、发射功率和发送符号数量下,对正交相移键控(QPSK)和正交幅... 该文研究多输入多输出(Multiple-Input Multiple-Output,MIMO)场景下的最小均方误差(MMSE)检测方法,旨在提升无线通信系统中的信号检测性能。通过仿真实验,在不同收发天线配置、发射功率和发送符号数量下,对正交相移键控(QPSK)和正交幅度调制(16QAM)进行性能分析。结果表明,随着信噪比的增加,误码率逐渐降低;增加天线数量可以降低误码率,但需要平衡硬件复杂度与性能。在相同信噪比下,QPSK的误码率低于16QAM,且MMSE-ML联合检测方法优于单独的MMSE检测方法。该研究可为优化MIMO系统中的信号检测方法提供新的视角和参考。 展开更多
关键词 多输入多输出 正交相移键控 正交幅度调制 最小误差检测 最大似然检测
在线阅读 下载PDF
上一页 1 2 73 下一页 到第
使用帮助 返回顶部