期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
可能性分布距离度量:一种鲁棒的域适应学习方法
1
作者 但雨芳 陶剑文 《计算机科学与探索》 CSCD 北大核心 2024年第3期674-692,共19页
领域适应(DA)学习旨在解决训练数据集与测试数据集分布不一致问题而广受关注,现有方法大多采用最小化领域间最大均值差(MMD)或其变体来解决域分布不一致问题。然而,领域中存在的噪声数据将会导致领域均值发生明显漂移,会在一定程度上影... 领域适应(DA)学习旨在解决训练数据集与测试数据集分布不一致问题而广受关注,现有方法大多采用最小化领域间最大均值差(MMD)或其变体来解决域分布不一致问题。然而,领域中存在的噪声数据将会导致领域均值发生明显漂移,会在一定程度上影响基于MMD及其变体的学习方法的适应性能。故此,提出了可能性分布距离度量下的一种鲁棒的域适应学习方法:首先,将传统MMD准则变换为新颖的可能性聚类模型来削弱噪声数据所带来的影响,以此构建一种鲁棒的可能性分布距离度量(P-DDM)准则,并通过引入模糊熵正则项来进一步提升领域分布配准的鲁棒有效性。其次,基于P-DDM准则,提出一种鲁棒的域适应视觉分类机(C-PDDM),其引入图拉普拉斯矩阵来保留源域与目标域内部数据间的几何结构一致性,以提升标签传播性能,同时通过最大化利用源域判别信息进行最小化领域判别误差,以进一步提升学习模型的泛化性能。理论分析证实,在一定条件下,所提P-DDM是传统分布距离度量方法MMD准则的一个上界,因而通过最小化P-DDM能有效优化MMD目标。最后,与几个代表性的领域适应学习方法进行比较,在6个视觉基准数据集(Office31、Office-Caltech、Office-Home、PIE、MNIST-UPS和COIL20)上的实验结果显示,该方法在泛化性能上平均提升了5%左右,在鲁棒性能上平均提升了10%左右。 展开更多
关键词 领域适应(DA) 可能性聚类 最大均值差(MMD) 模糊熵
在线阅读 下载PDF
基于最大熵模糊聚类简化的联合概率数据关联算法
2
作者 韩继辉 高龙 +2 位作者 黄子奇 黄道颖 张安琳 《火力与指挥控制》 CSCD 北大核心 2024年第12期62-67,76,共7页
针对杂波环境下联合概率数据关联算法(joint probabilistic data association,JPDA)计算复杂度较高、实时性较差等问题,提出一种基于最大熵模糊聚类的JPDA算法。基于目标轨迹和量测之间的关联规则,采用最大熵模糊聚类算法实现量测与目... 针对杂波环境下联合概率数据关联算法(joint probabilistic data association,JPDA)计算复杂度较高、实时性较差等问题,提出一种基于最大熵模糊聚类的JPDA算法。基于目标轨迹和量测之间的关联规则,采用最大熵模糊聚类算法实现量测与目标的初步数据关联,分析了公共量测对目标跟踪的影响,并引入了公共量测影响系数来修正关联概率,最后使用卡尔曼滤波算法对目标的状态估计进行预测,从而更新各个目标的状态。仿真结果表明,所提算法有效解决了在密集杂波环境中JPDA算法组合爆炸问题,极大缩短计算时间,提高了算法的实时性。 展开更多
关键词 多目标跟踪 联合概率数据关联算法 最大熵模糊聚类
在线阅读 下载PDF
基于最大熵模糊聚类的快速数据关联算法 被引量:15
3
作者 李良群 姬红兵 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2006年第2期251-256,共6页
提出了一种新颖的快速数据关联算法,减少了滤波中关联概率的计算量.该算法利用多个并行改进的最大熵模糊聚类对各个目标的有效观测进行聚类,采用聚类得到的模糊隶属度来重建滤波中的联合关联概率,并在联合关联概率中引入了比例因子避免... 提出了一种新颖的快速数据关联算法,减少了滤波中关联概率的计算量.该算法利用多个并行改进的最大熵模糊聚类对各个目标的有效观测进行聚类,采用聚类得到的模糊隶属度来重建滤波中的联合关联概率,并在联合关联概率中引入了比例因子避免航迹的合并;此外,分析了算法中差异因子的特性,考虑了杂波密度对它的影响,使得能够有效剔除无效观测,进一步减少计算量.仿真实验结果表明,提出的方法是一种有效的快速数据关联算法,跟踪性能要优于现有的数据关联算法. 展开更多
关键词 最大熵模糊聚类 数据关联 联合关联概率
在线阅读 下载PDF
茶叶傅里叶近红外光谱的混合模糊极大熵聚类分析 被引量:3
4
作者 傅海军 周树斌 +3 位作者 武小红 武斌 孙俊 戴春霞 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2019年第11期3465-3469,共5页
茶作为世界最受欢迎的三大饮料之一,不仅能够提神醒脑,而且还有帮助消化和降低血压等作用。随着人们对茶叶品质要求的日益提高,需要对不同品种的茶叶实现准确的鉴别分析以防止茶叶市场里茶叶品牌名不副实和以次充好等现象的发生。为实... 茶作为世界最受欢迎的三大饮料之一,不仅能够提神醒脑,而且还有帮助消化和降低血压等作用。随着人们对茶叶品质要求的日益提高,需要对不同品种的茶叶实现准确的鉴别分析以防止茶叶市场里茶叶品牌名不副实和以次充好等现象的发生。为实现对茶叶快速精准的鉴别分析,设计了一种综合采用傅里叶近红外光谱和新的模糊极大熵聚类(FEC)分析算法的茶叶品种鉴别系统。传统模糊极大熵聚类分析在聚类含噪声数据时,聚类结果往往容易出现错误,即FEC对噪声数据敏感。为解决这个问题,在FEC分析算法的基础上引入可能C均值聚类分析(PCM),提出了一种混合模糊极大熵聚类(MFEC)分析算法。MFEC可通过迭代计算得到模糊隶属度值,能实现对含噪声的茶叶傅里叶近红外光谱数据的准确聚类分析。首先,使用傅里叶近红外光谱仪(AntarisⅡ型)采集岳西翠兰、六安瓜片、施集毛峰三种安徽茶叶的傅里叶近红外光谱数据,光谱波数范围为10 000~4 000cm^-1。其次,对采集到的光谱数据使用多元散射校正(MSC)进行预处理,预处理后先用主成分分析(PCA)将光谱数据维数降至10维,然后再用线性判别分析(LDA)对降维后的近红外光谱数据进行特征提取。最后,通过混合模糊极大熵聚类分析和传统的模糊极大熵聚类分析对三种茶叶的光谱数据进行聚类分析,并对两种聚类分析算法得到的聚类准确率、收敛速度等进行对比分析。实验结果表明:混合模糊极大熵聚类(MFEC)分析算法与传统的模糊极大熵聚类(FEC)分析算法相比较,在相同的权重指数m下MFEC具有更高的聚类准确率。在m=2条件下,MFEC的聚类准确率达到了100%,而传统的模糊极大熵聚类在相同条件下聚类准确率仅为37.98%。MFEC收敛过程中仅需迭代10次即可达到收敛,而FEC需要迭代100次,因此MFEC可以更高效的进行模糊聚类分析,MFEC相比于FEC聚类性能具有明显的优越性。通过傅里叶近红外光谱技术,混合模糊极大熵聚类分析结合PCA与LDA算法构建的茶叶品种鉴别系统能够高效快速的完成对岳西翠兰、六安瓜片、施集毛峰三种茶叶的准确分类,为茶叶检测领域提供了一种创新的方法与设计思路,具有一定的理论价值和良好的市场应用前景。 展开更多
关键词 近红外光谱 茶叶 主成分分析 线性判别分析 模糊极大熵聚类分析
在线阅读 下载PDF
基于最大熵模糊聚类的快速多目标跟踪算法研究 被引量:10
5
作者 陈晓 李亚安 +1 位作者 蔚婧 李余兴 《西北工业大学学报》 EI CAS CSCD 北大核心 2017年第4期629-634,共6页
为了提高杂波环境中多目标跟踪的实时性和精确性,利用最大熵数据模糊聚类方法得到的模糊隶属度表示目标与量测之间的关联概率,同时分析了公共量测对目标的影响,引入影响因子重建互联概率矩阵,结合概率数据关联算法实现多目标的状态估计... 为了提高杂波环境中多目标跟踪的实时性和精确性,利用最大熵数据模糊聚类方法得到的模糊隶属度表示目标与量测之间的关联概率,同时分析了公共量测对目标的影响,引入影响因子重建互联概率矩阵,结合概率数据关联算法实现多目标的状态估计。该算法避免了对确认矩阵的拆分,解决了联合概率数据关联算法随着目标和回波数目增加而导致的计算量爆炸性增长问题。针对不同杂波密度环境下的临近平行目标和小角度交叉目标的跟踪进行了仿真分析,仿真结果表明:最大熵模糊聚类联合概率数据关联算法是一种有效的快速数据关联算法,在密集杂波环境中跟踪性能依然优于联合概率数据关联算法和经验联合概率数据关联算法,在一定程度上可以避免航迹融合。 展开更多
关键词 多目标跟踪 联合概率数据关联 经验联合概率数据关联 最大熵模糊聚类联合概率数据关联
在线阅读 下载PDF
决策属性未知下的学生评教粗糙集分析 被引量:20
6
作者 高维春 谭旭 《计算机工程与应用》 CSCD 2012年第9期238-241,共4页
为实现更为客观合理的学生评教,基于粗糙集方法进行智能化分析。粗糙集方法必然涉及到分析含有决策属性的决策表,而实际学生评教中由于缺乏客观的尺度评定教师的教学质量,造成相应决策属性的未知性。借鉴督导专家评价的优势,基于Kruska... 为实现更为客观合理的学生评教,基于粗糙集方法进行智能化分析。粗糙集方法必然涉及到分析含有决策属性的决策表,而实际学生评教中由于缺乏客观的尺度评定教师的教学质量,造成相应决策属性的未知性。借鉴督导专家评价的优势,基于Kruskal最大树模糊聚类方法对专家评价数据予以划分来获取决策属性,与学生评教数据集组合,构造完整的决策表。基于粗糙集方法从信息熵的角度来客观求取各评教指标的权重值,完成对待评教教师的决策评价分析。实例分析及对比实验证明了方法的有效性和优越性。 展开更多
关键词 粗糙集 条件信息熵 学生评教 评教指标权重 Kruskal最大树模糊聚类
在线阅读 下载PDF
基于最大熵的模糊核聚类图像分割方法 被引量:5
7
作者 沙秀艳 辛杰 《计算机工程》 CAS CSCD 北大核心 2011年第10期187-188,191,共3页
传统聚类算法易陷入局部极值,在数据线性不可分时分类效果较差。为此,提出一种基于最大熵的模糊核聚类图像分割方法。采用最大熵算法对原始图像进行初步分割,求得初始聚类中心;引入Mercer核函数,把输入空间的样本映射到高维特征空间,并... 传统聚类算法易陷入局部极值,在数据线性不可分时分类效果较差。为此,提出一种基于最大熵的模糊核聚类图像分割方法。采用最大熵算法对原始图像进行初步分割,求得初始聚类中心;引入Mercer核函数,把输入空间的样本映射到高维特征空间,并在特征空间中进行图像分割。实验结果表明,该方法能减少迭代次数,使分类结果更稳定,从而较好地把目标从背景中分割出来。 展开更多
关键词 模糊核聚类 最大熵 特征空间 图像分割
在线阅读 下载PDF
采用粒子滤波和模糊聚类法的非线性多目标跟踪 被引量:6
8
作者 张俊根 姬红兵 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2010年第4期636-641,共6页
提出一种新的非线性多目标跟踪方法,用模糊聚类算法实现数据关联,采用粒子滤波实现对各目标的独立跟踪.首先利用最大熵模糊聚类对目标和观测数据进行关联,采用模糊隶属度重建多目标滤波中的联合关联概率矩阵.然后利用粒子滤波适于处理... 提出一种新的非线性多目标跟踪方法,用模糊聚类算法实现数据关联,采用粒子滤波实现对各目标的独立跟踪.首先利用最大熵模糊聚类对目标和观测数据进行关联,采用模糊隶属度重建多目标滤波中的联合关联概率矩阵.然后利用粒子滤波适于处理非线性问题的特点,通过联合关联信息,采用粒子滤波独立对各目标进行滤波,实现对目标状态的更新.最后,将该算法应用于多传感器多目标纯方位角跟踪.仿真结果表明,相比于联合概率数据关联算法及MEF-JPDAF,新算法具有更高的跟踪精度. 展开更多
关键词 非线性多目标跟踪 数据关联 最大熵模糊聚类 独立粒子滤波 纯方位角跟踪
在线阅读 下载PDF
一种基于最大模糊熵的高斯聚类算法 被引量:7
9
作者 谭扬波 陈光 《电子科技大学学报》 EI CAS CSCD 北大核心 2000年第3期269-272,共4页
介绍了一种新的模糊聚类方法,定义了模糊熵,提出了基于最大模糊熵的模糊聚类的方法,得到了一种新的聚类算法——GCM算法。该算法的物理意义清晰,有明确的数学含义,相对于传统的FCM聚类算法,其聚类效果更好。
关键词 最大模糊熵 模糊聚类 高斯聚类算法
在线阅读 下载PDF
模糊聚类粒子滤波的点状交叉多目标跟踪算法 被引量:1
10
作者 艾斯卡尔 于伟俊 +1 位作者 王新滨 刘登峰 《计算机工程与应用》 CSCD 北大核心 2009年第8期158-160,164,共4页
提出了一种新的低信噪比红外序列图像多目标检测跟踪算法,该算法有机地结合了TBD检测算法与模糊聚类粒子滤波跟踪算法。首先通过多帧TBD处理后,检测出运动目标的初始位置、运动速度,然后在跟踪阶段采用粒子滤波算法估计目标运动状态,并... 提出了一种新的低信噪比红外序列图像多目标检测跟踪算法,该算法有机地结合了TBD检测算法与模糊聚类粒子滤波跟踪算法。首先通过多帧TBD处理后,检测出运动目标的初始位置、运动速度,然后在跟踪阶段采用粒子滤波算法估计目标运动状态,并在估计位置开一个跟踪窗进行检测、模糊聚类概率融合。对真实红外图像序列进行实验仿真,仿真结果验证了该算法具有良好的实时性与很高的精确性。 展开更多
关键词 检测前跟踪 粒子滤波器 最大模糊熵高斯聚类 多目标 数据融合
在线阅读 下载PDF
基于极大熵的知识迁移模糊聚类算法 被引量:1
11
作者 陈爱国 王士同 《智能系统学报》 CSCD 北大核心 2017年第1期95-103,共9页
针对传统的聚类算法在样本数据量不足或样本受到污染情况下的聚类性能下降问题,在经典的极大熵聚类算法(MEKTFCA)的基础上,提出了一种新的融合历史聚类中心点和历史隶属度这两种知识的基于极大熵的知识迁移模糊聚类算法。该算法通过学... 针对传统的聚类算法在样本数据量不足或样本受到污染情况下的聚类性能下降问题,在经典的极大熵聚类算法(MEKTFCA)的基础上,提出了一种新的融合历史聚类中心点和历史隶属度这两种知识的基于极大熵的知识迁移模糊聚类算法。该算法通过学习由源域总结出来的有益历史聚类中心和历史隶属度知识来指导数据量不足或受污染的目标域数据的聚类任务,从而提高了聚类性能。通过一组模拟数据集和两组真实数据集构造的迁移场景上的实验,证明了该算法的有效性。 展开更多
关键词 知识迁移 极大熵 聚类算法 极大熵聚类 模糊聚类
在线阅读 下载PDF
杂波环境下基于最大熵模糊聚类的JPDA算法 被引量:4
12
作者 毕文豪 周杰 +1 位作者 张安 刘力 《系统工程与电子技术》 EI CSCD 北大核心 2023年第7期1920-1927,共8页
针对杂波环境下的多目标跟踪数据关联存在跟踪精度低、实时性差的问题,提出了一种基于最大熵模糊聚类的联合概率数据关联算法(joint probabilistic data association algorithm based on maximum entropy fuzzy clustering,MEFC-JPDA)... 针对杂波环境下的多目标跟踪数据关联存在跟踪精度低、实时性差的问题,提出了一种基于最大熵模糊聚类的联合概率数据关联算法(joint probabilistic data association algorithm based on maximum entropy fuzzy clustering,MEFC-JPDA)。首先,采用最大熵模糊聚类求得的隶属度初步表征目标与有效量测之间的关联概率。其次,采用基于目标距离的量测修正因子对关联概率进行调整,并建立关联概率矩阵。最后,结合卡尔曼滤波算法,对目标的状态进行加权更新。仿真结果表明,所提算法在杂波环境下的跟踪性能相比现有的两种关联算法有较大提升,是一种有效的多目标跟踪数据关联算法。 展开更多
关键词 多目标跟踪 联合概率数据关联 最大熵模糊聚类 量测修正因子
在线阅读 下载PDF
基于模糊熵高斯聚类的弱点状动目标跟踪技术
13
作者 王新滨 艾斯卡尔.艾木都拉 《计算机工程与应用》 CSCD 北大核心 2008年第11期50-51,64,共3页
研究了一种基于最大模糊熵高斯聚类的实时图像目标跟踪算法:在目标初始信息(位置、速度)已知的情况下,应用最大模糊熵高斯聚类的方法进行跟踪窗内测量点融合,将融合后的点输入到Kalman滤波器中进行预测目标点下一个状态的位置,在预测位... 研究了一种基于最大模糊熵高斯聚类的实时图像目标跟踪算法:在目标初始信息(位置、速度)已知的情况下,应用最大模糊熵高斯聚类的方法进行跟踪窗内测量点融合,将融合后的点输入到Kalman滤波器中进行预测目标点下一个状态的位置,在预测位置继续开一个跟踪窗进行检测、融合,直至所有图像都被跟踪完为止。理论及实验结果表明,在序列图像情况下该算法能够在保持跟踪实时性的同时,提供较高的跟踪精度。 展开更多
关键词 点目标 序列图像 最大模糊熵高斯聚类 跟踪
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部