期刊文献+
共找到43篇文章
< 1 2 3 >
每页显示 20 50 100
基于参数优化VMD-MCKD的强噪声背景下滚动轴承故障特征提取
1
作者 蒋丽英 张瀛予 +2 位作者 高铭悦 张群晨 李贺 《沈阳航空航天大学学报》 2025年第2期72-80,共9页
针对强噪声背景滚动轴承故障特征难以被提取的问题,提出了参数优化变分模态分解(variational mode decomposition,VMD)和最大相关峭度反卷积(maximum correlation kurtosis deconvolution,MCKD)提取滚动轴承故障特征的方法。首先,采用... 针对强噪声背景滚动轴承故障特征难以被提取的问题,提出了参数优化变分模态分解(variational mode decomposition,VMD)和最大相关峭度反卷积(maximum correlation kurtosis deconvolution,MCKD)提取滚动轴承故障特征的方法。首先,采用改进麻雀算法对VMD参数进行离线寻优,得到最优参数组合并对原始信号进行分解。其次,根据包络谱峰值因子和样本熵构建出一种新筛选指标,对分解各固有模态函数(intrinsic mode function,IMF)分量进行筛选与重构。然后,对重构信号经改进麻雀算法在线法优化的MCKD进行增强。最后,对增强的信号进行包络解调分析,从而提取滚动轴承故障频率信息。仿真和实验结果表明,该方法能够增强淹没在强噪声中的冲击成分,有效提取滚动轴承故障特征。 展开更多
关键词 特征提取 滚动轴承 变分模态分解 最大相关峭度反卷积 信号重构
在线阅读 下载PDF
基于MCKD-FDM方法的汽车轴承振动信号降噪 被引量:2
2
作者 田萌 《山西电子技术》 2024年第3期35-36,74,共3页
为了提高电机轴承的故障诊断精度,选择傅里叶分解(FDM)方法把降噪处理信号分解,利用最大相关峭度反褶积(MCKD)重构信号包络谱图实现信息故障的诊断,并开展仿真与实验测试分析。研究结果表明:测试信号形成了明显的故障特征频率与各阶倍频... 为了提高电机轴承的故障诊断精度,选择傅里叶分解(FDM)方法把降噪处理信号分解,利用最大相关峭度反褶积(MCKD)重构信号包络谱图实现信息故障的诊断,并开展仿真与实验测试分析。研究结果表明:测试信号形成了明显的故障特征频率与各阶倍频,各阶倍频都发生了幅值降低。采用本文方法可以显著突出故障冲击成分,也可以提取获得丰富轴承故障信息,更明显体现故障特征频率与倍频。本研究故障诊断方法能够满足高精度的汽车传动系统故障检测要求。 展开更多
关键词 轴承 傅里叶分解方法 最大相关峭度反褶积 故障诊断
在线阅读 下载PDF
基于改进PSO-VMD-MCKD的滚动轴承故障诊断 被引量:1
3
作者 宿磊 刘智 +2 位作者 顾杰斐 李可 薛志钢 《噪声与振动控制》 CSCD 北大核心 2024年第4期118-124,共7页
针对滚动轴承信号在强噪声背景下故障特征提取困难的问题,提出一种变分模态分解(Variational Modal Decomposition,VMD)和最大相关峭度解卷积(Maximum Correlated Kurtosis Deconvolution,MCKD)相结合的故障诊断方法。首先基于VMD方法... 针对滚动轴承信号在强噪声背景下故障特征提取困难的问题,提出一种变分模态分解(Variational Modal Decomposition,VMD)和最大相关峭度解卷积(Maximum Correlated Kurtosis Deconvolution,MCKD)相结合的故障诊断方法。首先基于VMD方法选取故障信号的最优模态分量,然后采用MCKD算法增强最优分量信号中的冲击成分,最后通过包络谱分析提取滚动轴承的故障频率。利用粒子群优化算法(Particle Swarm Optimization,PSO)对VMD算法中的参数α和K以及MCKD算法中的参数L和M进行寻优,并对PSO算法中惯性因子和学习因子的更新方法加以改进,以提高参数寻优过程的收敛速度。仿真分析和试验结果表明,所提出的诊断方法可以有效提取被强噪声淹没的滚动轴承故障特征。 展开更多
关键词 故障诊断 滚动轴承 变分模态分解 最大相关峭度解卷积 粒子群优化
在线阅读 下载PDF
基于MCKD的海上风机齿轮箱轴承故障诊断方法 被引量:2
4
作者 郭奇 祁雷 +2 位作者 赵杨 徐晴晴 刘浩 《油气田地面工程》 2024年第6期62-67,72,共7页
海上风机齿轮箱结构复杂、故障多发,同时受海上风机运行的强噪声干扰,轴承故障的特征信号提取较为困难。针对以上问题,提出了一种基于最大相关峭度解卷积(MCKD)的故障诊断方法,通过MCKD算法对振动信号进行降噪处理和特征增强,并利用增... 海上风机齿轮箱结构复杂、故障多发,同时受海上风机运行的强噪声干扰,轴承故障的特征信号提取较为困难。针对以上问题,提出了一种基于最大相关峭度解卷积(MCKD)的故障诊断方法,通过MCKD算法对振动信号进行降噪处理和特征增强,并利用增强包络谱对轴承的故障特征频率进行提取,从而实现对轴承的故障诊断。将该方法应用到海上风机齿轮箱轴承的模拟信号和实测信号中,研究结果表明:该方法对海上强噪声环境下齿轮箱轴承故障的特征提取和诊断具有良好的效果。 展开更多
关键词 海上风机齿轮箱 轴承 故障诊断 最大相关峭度解卷积 增强包络谱
在线阅读 下载PDF
基于参数优化VMD-MCKD的滚动轴承早期故障诊断 被引量:2
5
作者 陶翰铭 张栋良 +1 位作者 吴坤鹏 吴杰 《噪声与振动控制》 CSCD 北大核心 2024年第6期156-164,共9页
针对滚动轴承早期故障特征易受强背景噪声影响而难以提取的问题,提出一种基于阿基米德算法(Archimedes Optimization Algorithm,AOA)优化变分模态分解(Variational Mode Decomposition,VMD)和相关最大峭度解卷积(Maximum Correlated Kur... 针对滚动轴承早期故障特征易受强背景噪声影响而难以提取的问题,提出一种基于阿基米德算法(Archimedes Optimization Algorithm,AOA)优化变分模态分解(Variational Mode Decomposition,VMD)和相关最大峭度解卷积(Maximum Correlated Kurtosis Deconvolution,MCKD)参数的滚动轴承故障诊断方法。首先,将不同移位数下相关峭度和现有指标进行对比,选取最优相关峭度指标作为目标函数优化VMD算法中分解层数K和惩罚因子,并基于VMD分解结果选取最优分量;其次,提出一种加权包络谱峭度作为目标函数优化MCKD算法中滤波器长度L和冲击信号周期T,基于MCKD算法增强最优分量中的冲击成分;最后,通过包络谱分析判断滚动轴承故障类型。仿真和试验结果表明,该方法可以有效提取并增强故障中的冲击成分,实现在强背景噪声下的滚动轴承早期故障诊断。 展开更多
关键词 故障诊断 滚动轴承 阿基米德算法 变分模态分解 最大相关峭度解卷积
在线阅读 下载PDF
基于小波包分解和MCKD的水泵轴承故障诊断方法
6
作者 蒋辉 邱露鹏 蒋强 《沈阳理工大学学报》 CAS 2024年第2期38-44,共7页
针对水泵在实际应用中所处环境复杂、故障信号包含大量噪声难以提取的问题,提出了一种结合小波包分解和最大相关峭度解卷积(MCKD)的水泵轴承故障诊断方法。首先,应用小波包分解对原始信号进行分解,根据分解信号的信噪比和标准差选取合... 针对水泵在实际应用中所处环境复杂、故障信号包含大量噪声难以提取的问题,提出了一种结合小波包分解和最大相关峭度解卷积(MCKD)的水泵轴承故障诊断方法。首先,应用小波包分解对原始信号进行分解,根据分解信号的信噪比和标准差选取合适的分量进行重构;然后,采用MCKD算法对重构信号降噪处理,突出信号中的有效周期冲击成分;最后,对处理好的信号进行包络谱分析,从包络谱中得到故障频率。实验结果表明,小波包分解和MCKD方法能够有效提取水泵轴承故障特征频率,可为工程实际应用提供参考。 展开更多
关键词 最大相关峭度解卷积 小波包分解 故障诊断 轴承
在线阅读 下载PDF
Teager能量算子结合MCKD的滚动轴承早期故障识别 被引量:31
7
作者 刘尚坤 唐贵基 何玉灵 《振动与冲击》 EI CSCD 北大核心 2016年第15期98-102,共5页
针对Teager能量算子在解调滚动轴承早期微弱故障特征中的不足,提出一种最大相关峭度解卷积降噪与Teager能量算子解调相结合的滚动轴承早期故障识别方法。首先采用最大相关峭度解卷积算法以包络谱的峭度最大化为目标对原信号进行降噪处... 针对Teager能量算子在解调滚动轴承早期微弱故障特征中的不足,提出一种最大相关峭度解卷积降噪与Teager能量算子解调相结合的滚动轴承早期故障识别方法。首先采用最大相关峭度解卷积算法以包络谱的峭度最大化为目标对原信号进行降噪处理、检测信号中的周期性冲击成分,然后利用Teager能量算子增强降噪信号中的周期性冲击特征、抑制非冲击成分,最后通过分析Teager能量谱中明显的频率成分来诊断故障类型。滚动轴承外圈、内圈故障诊断实例表明,该方法能有效实现滚动轴承早期微弱故障的识别。 展开更多
关键词 TEAGER能量算子 最大相关峭度解卷积 滚动轴承 早期故障诊断
在线阅读 下载PDF
基于MCKD和teager能量算子的滚动轴承复合故障诊断 被引量:13
8
作者 齐咏生 刘飞 +2 位作者 高学金 李永亭 刘利强 《大连理工大学学报》 EI CAS CSCD 北大核心 2019年第1期35-44,共10页
滚动轴承是旋转机械的主要部件之一,复杂多变的工作环境导致其频繁出现故障,且大部分情况下多种故障复合.针对这一问题,提出一种基于改进最大相关峭度解卷积(MCKD)和teager能量算子混合的滚动轴承复合故障诊断方法.该方法通过粒子群优... 滚动轴承是旋转机械的主要部件之一,复杂多变的工作环境导致其频繁出现故障,且大部分情况下多种故障复合.针对这一问题,提出一种基于改进最大相关峭度解卷积(MCKD)和teager能量算子混合的滚动轴承复合故障诊断方法.该方法通过粒子群优化算法(PSO)对不同类型故障下MCKD的影响参数(L和M)进行寻优,设置与故障类型相对应的解卷积周期,以相关峭度最大化进行MCKD算法迭代运算,优化滤波器系数,改进的MCKD算法减少了噪声的干扰.然后利用teager能量算子具有检测信号瞬态冲击的优势,对信号的teager能量进行频谱分析,实现复合故障诊断.最后利用西储大学轴承数据和轴承故障模拟实验台对该方法进行验证,结果表明该方法能从滚动轴承单一和复合故障中有效提取故障特征信息,准确识别出故障类型. 展开更多
关键词 复合故障 最大相关峭度解卷积(mckd) 能量算子 故障诊断
在线阅读 下载PDF
基于MCKD和重分配小波尺度谱的旋转机械复合故障诊断研究 被引量:28
9
作者 钟先友 赵春华 +1 位作者 陈保家 田红亮 《振动与冲击》 EI CSCD 北大核心 2015年第7期156-161,共6页
针对强噪声环境下旋转机械复合故障信号难于提取与分离的问题,提出了基于最大相关峭度解卷积(Maximum Correlated Kurtosis Deconvolution,MCKD)和重分配小波尺度谱的旋转机械故障诊断方法。机械信号中存在的噪声会降低重分配小波尺度... 针对强噪声环境下旋转机械复合故障信号难于提取与分离的问题,提出了基于最大相关峭度解卷积(Maximum Correlated Kurtosis Deconvolution,MCKD)和重分配小波尺度谱的旋转机械故障诊断方法。机械信号中存在的噪声会降低重分配小波尺度谱的时频分布可读性,故先要对信号进行MCKD降噪,同时从振动信号中分离出各个故障成分,然后进行Hilbert变换得到包络成分,最后再对包络成分进行重分配小波尺度谱分析,根据尺度图中冲击成分的周期诊断转机械复合故障,算法仿真和应用实例验证了该方法的有效性。 展开更多
关键词 最大相关峭度解卷积 重分配小波尺度谱 复合故障 最小熵解卷积
在线阅读 下载PDF
基于MCKD和增强倒频谱的直升机自动倾斜器滚动轴承故障诊断方法 被引量:7
10
作者 孙伟 李新民 +2 位作者 金小强 黄建萍 张先辉 《振动与冲击》 EI CSCD 北大核心 2019年第2期159-163,共5页
针对直升机自动倾斜器滚动轴承转速低,其早期故障特征信号易被噪声淹没的问题,提出了基于最大相关峭度解卷积(MCKD)和增强倒频谱分析的直升机自动倾斜器滚动轴承故障诊断方法。该方法利用MCKD方法对故障信号进行降噪处理,采用自相关方... 针对直升机自动倾斜器滚动轴承转速低,其早期故障特征信号易被噪声淹没的问题,提出了基于最大相关峭度解卷积(MCKD)和增强倒频谱分析的直升机自动倾斜器滚动轴承故障诊断方法。该方法利用MCKD方法对故障信号进行降噪处理,采用自相关方法和广义Shannon熵对倒频谱分析进行改进,得到增强倒频谱,提取故障特征频率。实验研究表明,所提出的方法能精确地诊断自动倾斜器滚动轴承内圈、外圈和滚珠故障,且优于传统的倒频谱分析,可以预防重大故障发生。 展开更多
关键词 滚动轴承 故障诊断 最大相关峭度解卷积(mckd) 增强倒频谱 自动倾斜器
在线阅读 下载PDF
基于优化VMD和MCKD的滚动轴承早期故障诊断方法 被引量:19
11
作者 王新刚 王超 韩凯忠 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第3期373-380,388,共9页
针对滚动轴承早期故障信号易受噪声等背景信息干扰难于提取故障特征的现象,提出了将优化K值的变分模态分解(VMD)和粒子群优化算法(PSO)优化参数L,M的最大相关峭度解卷积(MCKD)相结合提取滚动轴承故障特征频率的方法.首先,确定VMD中K值,... 针对滚动轴承早期故障信号易受噪声等背景信息干扰难于提取故障特征的现象,提出了将优化K值的变分模态分解(VMD)和粒子群优化算法(PSO)优化参数L,M的最大相关峭度解卷积(MCKD)相结合提取滚动轴承故障特征频率的方法.首先,确定VMD中K值,对信号进行分解后得到一系列模态分量;然后利用EWK指标选择包含故障信息最多的有效模态分量进行后续分析,利用优化的MCKD对其进行增强;最后对增强信号进行包络解调提取故障特征频率,验证所提方法的有效性.仿真和实验表明该方法可以精确地提取出轴承故障信号中的特征频率,实现故障诊断. 展开更多
关键词 VMD的K值优化 EWK指标 粒子群优化 最大相关峭度解卷积(mckd) 故障诊断
在线阅读 下载PDF
自适应UPEMD-MCKD轴承故障特征提取方法 被引量:7
12
作者 宋宇博 刘运航 朱大鹏 《振动与冲击》 EI CSCD 北大核心 2023年第3期83-91,共9页
为了准确提取强噪声背景下较微弱的轴承故障特征信息,结合均相经验模态分解(uniform phase empirical mode decomposition, UPEMD)和最大相关峭度解卷积方法(maximum correlated kurtosis deconvolution, MCKD)的优势,提出了一种自适应U... 为了准确提取强噪声背景下较微弱的轴承故障特征信息,结合均相经验模态分解(uniform phase empirical mode decomposition, UPEMD)和最大相关峭度解卷积方法(maximum correlated kurtosis deconvolution, MCKD)的优势,提出了一种自适应UPEMD-MCKD轴承故障特征提取方法。该方法将样本熵和峭度指标相结合构建最小熵峭比,采用遗传算法对最小熵峭比的最小值进行搜索,以确定移位数、滤波器长度和周期的最佳参数组合。经均相模态分解方法预处理的含噪信号通过相关性计算选取有效分量进行信号重构,重构信号借助最佳参数组合下的MCKD算法提取故障特征。内圈故障和外圈故障的实例分析表明,所提方法借助UPEMD的噪声抑制能力和最小熵峭比的参数组合寻优评价能力,能够从故障信号中有效的提取出微弱的故障特征。 展开更多
关键词 强噪声 滚动轴承 均相经验模态分解(UPEMD) 遗传算法 最大相关峭度解卷积(mckd) 特征提取
在线阅读 下载PDF
最优参数MCKD与ELMD在轴承复合故障诊断中的应用研究 被引量:20
13
作者 杨斌 张家玮 +1 位作者 樊改荣 王建国 《振动与冲击》 EI CSCD 北大核心 2019年第11期59-67,共9页
机械设备中滚动轴承复合故障的情况普遍存在。针对多种故障难分离和提取的问题,提出了基于最优参数最大相关峭度解卷积(Optimal Parameter Maxim Correlated Kurtosis Deconvolution,OPMCKD)与总体局部均值分解方法(Ensemble Local Mean... 机械设备中滚动轴承复合故障的情况普遍存在。针对多种故障难分离和提取的问题,提出了基于最优参数最大相关峭度解卷积(Optimal Parameter Maxim Correlated Kurtosis Deconvolution,OPMCKD)与总体局部均值分解方法(Ensemble Local Mean Decomposition, ELMD)相结合的轴承复合故障诊断方法;首先利用排列熵值、包络谱稀疏度分别筛选MCKD中的最优滤波器长度L与冲击周期T,提取滚动轴承主故障;然后通过ELMD方法将非平稳信号分解为若干个分量,筛去主故障信息后,再次利用最优参数MCKD进行次故障诊断。通过对轴承信号的分析,验证了该方法能有效分离复合故障信号,具有一定的实用性。 展开更多
关键词 最优参数最大相关峭度解卷积 总体局部均值分解 复合故障 故障诊断
在线阅读 下载PDF
MCKD和RSSD在滚动轴承早期故障诊断中的应用 被引量:2
14
作者 杨斌 张家玮 +2 位作者 樊改荣 王建国 张超 《噪声与振动控制》 CSCD 2018年第2期154-161,共8页
由于干扰噪声较强,共振稀疏分解在滚动轴承早期故障阶段并不能有效提取瞬态冲击成分。针对此问题提出基于最大相关峭度解卷积(Maxim Correlated Kurtosis Deconvolution,MCKD)和共振稀疏分解(Resonance Sparse Signal Decomposition,RS... 由于干扰噪声较强,共振稀疏分解在滚动轴承早期故障阶段并不能有效提取瞬态冲击成分。针对此问题提出基于最大相关峭度解卷积(Maxim Correlated Kurtosis Deconvolution,MCKD)和共振稀疏分解(Resonance Sparse Signal Decomposition,RSSD)相结合的故障特征提取方法。该方法首先利用MCKD对振动冲击信号进行处理,有效降噪并突出故障信号尖脉冲,然后使用共振稀疏分解将信号分解成包含谐波信号的高共振分量与包含瞬态冲击信号的低共振分量,最后利用包络功率谱根据低共振分量提取故障特征频率。通过仿真和试验验证了该方法可以准确提取故障特征频率,凸显故障特征。 展开更多
关键词 振动与波 滚动轴承 故障诊断 共振稀疏分解 最大相关峭度解卷积
在线阅读 下载PDF
MCKD-Teager能量算子结合LSTM的滚动轴承故障诊断 被引量:14
15
作者 张氢 江伟哲 李恒 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2021年第7期68-76,83,共10页
为解决滚动轴承故障时产生的信号具有强背景噪声而导致弱周期冲击特征难提取,以及在对轴承故障模式进行智能诊断时一般的诊断模型对故障振动信号的时序特征识别效果不强这两大问题,提出一种基于最大相关峭度解卷积(MCKD)、Teager能量算... 为解决滚动轴承故障时产生的信号具有强背景噪声而导致弱周期冲击特征难提取,以及在对轴承故障模式进行智能诊断时一般的诊断模型对故障振动信号的时序特征识别效果不强这两大问题,提出一种基于最大相关峭度解卷积(MCKD)、Teager能量算子和长短期记忆网络(LSTM)的故障诊断方法。使用MCKD算法对滚动轴承振动信号进行降噪处理,提取出信号中被噪声掩盖的周期冲击特征,并利用Teager能量算子检测信号的瞬态冲击,得到Teager能量序列;将结果分为训练集和测试集,将训练集输入到建立的LSTM故障诊断模型中进行学习,不断更新网络参数并提取出时间维度的特征信息;将训练好参数的LSTM模型应用于测试集,输出故障诊断结果。实验结果表明,提出的方法以端到端模式可以一次性诊断多种类型、尺寸的故障,具有很高的识别精度,是一种可以有效利用强背景噪声信号中时序特征的故障诊断方法。 展开更多
关键词 滚动轴承 故障诊断 最大相关峭度解卷积 TEAGER能量算子 长短期记忆网络
在线阅读 下载PDF
自适应双阻尼小波字典的轴承复合故障诊断方法
16
作者 胡俊锋 赵丽娟 +1 位作者 严雪竹 张龙 《振动与冲击》 北大核心 2025年第7期239-246,共8页
针对强背景噪声下难以准确提取出轴承复合故障中各故障类型有效特征的问题,提出一种基于最大相关峭度解卷积(maximum correlated kurtosis deconvolution,MCKD)和稀疏表征的轴承复合故障诊断方法。该方法首先通过MCKD算法实现复合故障... 针对强背景噪声下难以准确提取出轴承复合故障中各故障类型有效特征的问题,提出一种基于最大相关峭度解卷积(maximum correlated kurtosis deconvolution,MCKD)和稀疏表征的轴承复合故障诊断方法。该方法首先通过MCKD算法实现复合故障的分离,并达到初步增强故障冲击特征的效果;然后进行稀疏表征字典设计先验知识分析,构造与真实故障脉冲响应更加匹配的双阻尼非对称小波参数字典,结合正交匹配追踪算法,稀疏重构出各故障特征;最后对重构分量做包络谱分析,提取轴承故障特征频率。考虑到MCKD算法和非对称小波中的参数选取决定着最终的特征提取效果,使用鲸鱼优化算法实现参数自动优化选取。仿真数据和试验台数据分析结果表明,所提出的方法可有效提取出轴承复合故障中的各类故障成分,且相比常用的单阻尼Laplace小波字典具有一定的优越性。 展开更多
关键词 复合故障 最大相关峭度解卷积(mckd)算法 双阻尼非对称小波 稀疏分解 特征提取
在线阅读 下载PDF
基于SSA-VMD-MCKD的强背景噪声环境下滚动轴承故障诊断 被引量:19
17
作者 任良 甄龙信 +2 位作者 赵云 董前程 张云鹏 《振动与冲击》 EI CSCD 北大核心 2023年第3期217-226,共10页
为在强背景噪声环境下有效提取滚动轴承微弱故障特征并准确诊断故障,提出奇异谱分析(singular spectrum analysis, SSA)、变分模态分解(variational mode decomposition, VMD)和最大相关峭度解卷积(maximum correlated kurtosis deconvo... 为在强背景噪声环境下有效提取滚动轴承微弱故障特征并准确诊断故障,提出奇异谱分析(singular spectrum analysis, SSA)、变分模态分解(variational mode decomposition, VMD)和最大相关峭度解卷积(maximum correlated kurtosis deconvolution, MCKD)结合的滚动轴承故障诊断方法。首先,利用SSA算法将故障信号分解,根据时域互相关准则对分解信号筛选重构;其次,利用鲸鱼优化算法(whale optimization algorithm, WOA)分别优化VMD的参数alpha,K以及MCKD的参数L和M,利用参数优化的VMD对重构信号进行分解,根据峭度指标从分解所得的本征模态函数(intrinsic mode function, IMF)中提取故障特征信号;再次,利用参数优化的MCKD算法增强故障特征;最后,通过频谱包络进行故障诊断。仿真和试验表明,所提方法能在强噪声干扰下有效提取并诊断轴承故障。 展开更多
关键词 奇异谱分析(SSA) 变分模态分解(VMD) 最大相关峭度解卷积(mckd) 鲸鱼仿生优化算法(WOA) 轴承故障诊断
在线阅读 下载PDF
基于MCKD和改进IESFOgram相结合的行星轴承外圈故障诊断 被引量:5
18
作者 陈鑫 郭瑜 +2 位作者 伍星 樊家伟 林云 《振动与冲击》 EI CSCD 北大核心 2021年第20期200-206,共7页
针对行星齿轮箱中振动信号传递路径具有时变性和信号间相互耦合的问题,提出了基于最大相关峭度反卷积消噪技术(maximum correlated kurtosis deconvolution,MCKD)和特征优化图改进包络谱(improved envelope spectrum via feature optimi... 针对行星齿轮箱中振动信号传递路径具有时变性和信号间相互耦合的问题,提出了基于最大相关峭度反卷积消噪技术(maximum correlated kurtosis deconvolution,MCKD)和特征优化图改进包络谱(improved envelope spectrum via feature optimisation-gram,IESFOgram)相结合的行星轴承外圈故障诊断方法。该方法使用MCKD技术对信号进行降噪处理,增强与行星轴承故障相关分量的能量幅值;采用改进IESFOgram提取轴承故障振动分量,再基于特征频率各阶次谐波频率与边带积分比值之和最大确定包含轴承故障信息最丰富的优化解调频带;最后包络谱分析辨识故障特征。通过对行星轴承外圈的实测数据分析,验证了所提方法的有效性。 展开更多
关键词 行星轴承 行星齿轮箱 最大相关峭度反卷积 特征优化图
在线阅读 下载PDF
基于ICSA-MCKD方法的滚动轴承声信号微弱故障诊断 被引量:5
19
作者 王树杰 李宏坤 +2 位作者 王朝阁 孙斌 刘艾强 《大连理工大学学报》 CAS CSCD 北大核心 2022年第5期467-475,共9页
针对滚动轴承声信号中微弱故障特征难以有效提取的问题,提出了基于自适应的最大相关峭度反卷积(maximum correlation kurtosis deconvolution, MCKD)的滚动轴承声信号故障诊断方法.首先,提出了改进的布谷鸟搜索算法(improved cuckoo sea... 针对滚动轴承声信号中微弱故障特征难以有效提取的问题,提出了基于自适应的最大相关峭度反卷积(maximum correlation kurtosis deconvolution, MCKD)的滚动轴承声信号故障诊断方法.首先,提出了改进的布谷鸟搜索算法(improved cuckoo search algorithm, ICSA),在莱维飞行中引入步长尺度因子,在偏好随机游走中自适应地调整发现概率,使得算法有更快的搜索速度和更高的搜索精度.然后,利用ICSA以调整的谐波显著性指标(adjusted harmonic significant index, AHSI)作为适应度函数对MCKD的滤波器长度和故障特征周期进行寻优,将最佳参数组合输入MCKD中进行反卷积处理.最后通过包络谱分析,实现了基于声信号滚动轴承故障诊断.对仿真信号和实测信号的验证,证明了该方法的有效性和优越性. 展开更多
关键词 滚动轴承 声信号 布谷鸟搜索算法 最大相关峭度反卷积
在线阅读 下载PDF
基于IMCKD和MCCNN的滚动轴承故障诊断方法 被引量:4
20
作者 刘好博 郝洪涛 丁文捷 《振动与冲击》 EI CSCD 北大核心 2022年第7期241-249,共9页
受外界环境噪声以及振噪耦合的影响,滚动轴承早期故障信号特征微弱,对其实现智能故障诊断具有挑战性。为了解决上述问题,提出一种基于改进最大相关峭度解卷积(improved maximum correlation kurtosis deconvolution,IMCKD)和多通道卷积... 受外界环境噪声以及振噪耦合的影响,滚动轴承早期故障信号特征微弱,对其实现智能故障诊断具有挑战性。为了解决上述问题,提出一种基于改进最大相关峭度解卷积(improved maximum correlation kurtosis deconvolution,IMCKD)和多通道卷积神经网络(multi-channel convolution neural network,MCCNN)的智能故障诊断方法。首先利用萤火虫算法并行搜寻最大相关峭度解卷积的两个影响参数,对原始振动信号进行自适应滤波,得到诊断用的数据源;然后将其输入到MCCNN中进行特征学习,不断更新网络参数;最后将特征应用于分类器识别,从而实现滚动轴承的智能故障诊断。为了验证方法的可行性和有效性,利用滚动轴承故障模拟试验台采集的数据对该算法进行了验证。试验结果表明,该方法能准确、有效地对滚动轴承的故障类型进行分类,即使在强背景噪声下仍具有90%以上的故障识别率,并具有较好的稳定性和泛化能力。 展开更多
关键词 滚动轴承 最大相关峭度解卷积 卷积神经网络 萤火虫优化 特征学习
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部