期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
一种有效的不确定数据概率频繁项集挖掘算法 被引量:8
1
作者 刘立新 张晓琳 毛伊敏 《计算机应用研究》 CSCD 北大核心 2012年第3期841-843,共3页
针对PFIM算法中频繁概率计算方法的局限性,且挖掘时需要多次扫描数据库和生成大量候选集的不足,提出EPFIM(efficient probabilistic frequent itemset mining)算法。新提出的频繁概率计算方法能适应数据流等项集的概率发生变化时的情况... 针对PFIM算法中频繁概率计算方法的局限性,且挖掘时需要多次扫描数据库和生成大量候选集的不足,提出EPFIM(efficient probabilistic frequent itemset mining)算法。新提出的频繁概率计算方法能适应数据流等项集的概率发生变化时的情况;通过不确定数据库存储在概率矩阵中,以及利用项集的有序性和逐步删除无用事物来提高挖掘效率。理论分析和实验结果证明了EPFIM算法的性能更优。 展开更多
关键词 不确定数据 可能世界 期望支持度 概率频繁项集
在线阅读 下载PDF
基于有序树的不确定数据最大频繁项挖掘算法 被引量:7
2
作者 刘卫明 蒯海龙 +1 位作者 陈志刚 毛伊敏 《计算机工程与应用》 CSCD 北大核心 2015年第24期145-149,共5页
针对UF-tree中项集存在的数据和路径冗余的问题,设计了有序的压缩不确定树SCUF-tree,在节点中存储元素的不同支持度,达到压缩存储空间和方便移植已有的确定数据最大频繁项集算法的目的。结合最大频繁项集挖掘算法MMFI的设计思想,提出了... 针对UF-tree中项集存在的数据和路径冗余的问题,设计了有序的压缩不确定树SCUF-tree,在节点中存储元素的不同支持度,达到压缩存储空间和方便移植已有的确定数据最大频繁项集算法的目的。结合最大频繁项集挖掘算法MMFI的设计思想,提出了一种挖掘不确定最大频繁项集算法UMMFI算法,并采取逐层逐个的NBN策略挖掘不确定最大频繁项集。实验结果表明,UMMFI算法具有较好的时空效益和适应性。 展开更多
关键词 不确定数据的最大频繁项集 不确定数据最大频繁项挖掘(UMMFI)算法 有序的压缩不确定树(SCUF-tree) 逐层逐个地处理节点(NBN)策略
在线阅读 下载PDF
项约束先过滤的最大频繁项集挖掘算法 被引量:8
3
作者 姚全珠 李如琼 王美君 《计算机工程》 CAS CSCD 2012年第4期73-75,共3页
在稠密型数据库中,现有最大频繁项集挖掘算法效率低、耗时长,挖掘结果模糊,不利于用户使用。为此,提出一种项约束先过滤的最大频繁项集挖掘算法——VCM。利用项包含约束过滤数据库,使用垂直数据表示数据集,采用深度优先的挖掘策略对数... 在稠密型数据库中,现有最大频繁项集挖掘算法效率低、耗时长,挖掘结果模糊,不利于用户使用。为此,提出一种项约束先过滤的最大频繁项集挖掘算法——VCM。利用项包含约束过滤数据库,使用垂直数据表示数据集,采用深度优先的挖掘策略对数据库进行最大频繁相集的挖掘。实验结果表明,该算法快速有效,尤其在挖掘具有长模式的稠密数据库时优势明显。 展开更多
关键词 关联规则 最大频繁项集 项约束 垂直数据格式 深度优先 稠密数据库
在线阅读 下载PDF
基于矩阵的不确定数据频繁项集快速挖掘算法 被引量:5
4
作者 刘芝怡 常睿 《南京理工大学学报》 EI CAS CSCD 北大核心 2015年第4期420-425,共6页
针对CUF-growth算法中项集的期望支持度估算值过大,且挖掘过程中需要反复递归构造条件CUF-tree导致挖掘效率降低这一问题,提出UFIM-Matrix(Uncertain frequent itemset mining-matrix)算法。该算法不需要建立树结构,而是利用计算项集估... 针对CUF-growth算法中项集的期望支持度估算值过大,且挖掘过程中需要反复递归构造条件CUF-tree导致挖掘效率降低这一问题,提出UFIM-Matrix(Uncertain frequent itemset mining-matrix)算法。该算法不需要建立树结构,而是利用计算项集估算期望支持度的新方法和矩阵结构来产生规模更小候选项集,能在一定程度上减少计算开销,提高挖掘效率。最后的实验结果也表明了新算法性能更优。 展开更多
关键词 不确定数据 频繁项集 期望支持度 快速挖掘
在线阅读 下载PDF
一种挖掘不确定数据最大模式的深度优先算法 被引量:3
5
作者 李雨明 邱卫东 +1 位作者 徐赛赛 郭英凯 《计算机工程》 CAS CSCD 北大核心 2015年第7期204-209,共6页
不确定性数据挖掘是数据挖掘领域的研究热点,但其应用于最大频繁项集的算法较少。根据不确定数据挖掘的特点,把挖掘确定性数据最大频繁模式的Gen Max算法扩展到不确定数据中,提出一种U-Gen Max算法。对Tid集进行扩展,在id域的基础上增... 不确定性数据挖掘是数据挖掘领域的研究热点,但其应用于最大频繁项集的算法较少。根据不确定数据挖掘的特点,把挖掘确定性数据最大频繁模式的Gen Max算法扩展到不确定数据中,提出一种U-Gen Max算法。对Tid集进行扩展,在id域的基础上增加概率域,实现垂直数据格式转换。在频繁项集判断方面加入前置判断来剪枝非频繁项集,相比直接计算置信度的方式,降低了计算量。基于栈式结构给出多步回退剪枝新策略,从而避免Gen M ax算法只能单步回退的缺陷。实验结果证明,该算法计算性能良好,可适用于各种情况下的稀疏数据集与支持度较高情况下的稠密数据集。 展开更多
关键词 不确定数据 频繁项集 最大模式 垂直格式 剪枝策略 置信度
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部