Using semi-tensor product of matrices, the controllability and stabilizability of finite automata are investigated. By expressing the states, inputs, and outputs in vector forms, the transition and output functions ar...Using semi-tensor product of matrices, the controllability and stabilizability of finite automata are investigated. By expressing the states, inputs, and outputs in vector forms, the transition and output functions are represented in matrix forms.Based on this algebraic description, a necessary and sufficient condition is proposed for checking whether a state is controllable to another one. By this condition, an algorithm is established to find all the control sequences of an arbitrary length. Moreover, the stabilizability of finite automata is considered, and a necessary and sufficient condition is presented to examine whether some states can be stabilized. Finally, the study of illustrative examples verifies the correctness of the presented results/algorithms.展开更多
To reduce the computational complexity of matrix inversion, which is the majority of processing in many practical applications, two numerically efficient recursive algorithms (called algorithms I and II, respectively...To reduce the computational complexity of matrix inversion, which is the majority of processing in many practical applications, two numerically efficient recursive algorithms (called algorithms I and II, respectively) are presented. Algorithm I is used to calculate the inverse of such a matrix, whose leading principal minors are all nonzero. Algorithm II, whereby, the inverse of an arbitrary nonsingular matrix can be evaluated is derived via improving the algorithm I. The implementation, for algorithm II or I, involves matrix-vector multiplications and vector outer products. These operations are computationally fast and highly parallelizable. MATLAB simulations show that both recursive algorithms are valid.展开更多
基金supported by the National Natural Science Foundation of China(61174094)the Tianjin Natural Science Foundation of China(13JCYBJC1740014JCYBJC18700)
文摘Using semi-tensor product of matrices, the controllability and stabilizability of finite automata are investigated. By expressing the states, inputs, and outputs in vector forms, the transition and output functions are represented in matrix forms.Based on this algebraic description, a necessary and sufficient condition is proposed for checking whether a state is controllable to another one. By this condition, an algorithm is established to find all the control sequences of an arbitrary length. Moreover, the stabilizability of finite automata is considered, and a necessary and sufficient condition is presented to examine whether some states can be stabilized. Finally, the study of illustrative examples verifies the correctness of the presented results/algorithms.
文摘To reduce the computational complexity of matrix inversion, which is the majority of processing in many practical applications, two numerically efficient recursive algorithms (called algorithms I and II, respectively) are presented. Algorithm I is used to calculate the inverse of such a matrix, whose leading principal minors are all nonzero. Algorithm II, whereby, the inverse of an arbitrary nonsingular matrix can be evaluated is derived via improving the algorithm I. The implementation, for algorithm II or I, involves matrix-vector multiplications and vector outer products. These operations are computationally fast and highly parallelizable. MATLAB simulations show that both recursive algorithms are valid.