Current design method for circular sliding slopes is not so reasonable that it often results in slope (sliding.) As a result, artificial neural network (ANN) is used to establish an artificial neural network based inv...Current design method for circular sliding slopes is not so reasonable that it often results in slope (sliding.) As a result, artificial neural network (ANN) is used to establish an artificial neural network based inverse design method for circular sliding slopes. A sample set containing 21 successful circular sliding slopes excavated in the past is used to train the network. A test sample of 3 successful circular sliding slopes excavated in the past is used to test the trained network. The test results show that the ANN based inverse design method is valid and can be applied to the design of circular sliding slopes.展开更多
Now, a rapidly growing concern for the environmental protection and resource utilization has stimulated many new activities in the in dustrialized world for coping with urgent environmental problems created by the ste...Now, a rapidly growing concern for the environmental protection and resource utilization has stimulated many new activities in the in dustrialized world for coping with urgent environmental problems created by the steadily increasing consumption of industrial products. Increasingly stringent r egulations and widely expressed public concern for the environment highlight the importance of disposing solid waste generated from industrial and consumable pr oducts. How to efficiently recycle and tackle this problem has been a very impo rtant issue over the world. Designing products for recyclability is driven by environmental and economic goals. To obtain good recyclability, two measures can be adopted. One is better recycling strategy and technology; the other is design for recycling (DFR). The recycling strategies of products generally inclu de: reuse, service, remanufacturing, recycling of production scraps during the p roduct usage, recycle (separation first) and disposal. Recyclability assessment is a very important content in DFR. This paper first discusses the content of D FR and strategies and types related to products recyclability, and points out th at easy or difficult recyclability depends on the design phase. Then method and procedure of recyclability assessment based on ANN is explored in detail. The pr ocess consists of selection of the ANN input and output parameters, control of t he sample quality and construction and training of the neural network. At la st, the case study shows this method is simple and operative.展开更多
Prediction of surface finish in turning process is a difficult but important task. Artificial Neural Networks (ANN) can reliably pred ict the surface finish but require a lot of training data. To overcome this prob le...Prediction of surface finish in turning process is a difficult but important task. Artificial Neural Networks (ANN) can reliably pred ict the surface finish but require a lot of training data. To overcome this prob lem, an expert system approach is proposed, wherein it will be possible to predi ct the surface finish from limited experiments. The expert system contains a kno wledge base prepared from machining data handbooks and number of experiments con ducted by turning steel rods, over a wide range of cutting parameters. With this knowledge base, the expert system predicts surface finish for different tool-w ork-piece combinations, by carrying out few experiments for each case. The prop osed expert system model is validated by carrying out a number of experiments.展开更多
In order to study intelligent fault diagnosis methods based on fuzzy neural network (NN) expert system and build up intelligent fault diagnosis for a type of missile weapon system, the concrete implementation of a fuz...In order to study intelligent fault diagnosis methods based on fuzzy neural network (NN) expert system and build up intelligent fault diagnosis for a type of missile weapon system, the concrete implementation of a fuzzy NN fault diagnosis expert system is given in this paper. Based on thorough research of knowledge presentation, the intelligent fault diagnosis system is implemented with artificial intelligence for a large-scale missile weapon equipment. The method is an effective way to perform fuzzy fault diagnosis. Moreover, it provides a new way of the fault diagnosis for large-scale missile weapon equipment.展开更多
In this paper, we first make a brief review on the fundamental properties of artificial neural networks (ANN) and the basic models, and explore emphatically some potential application of artificial neural networks in ...In this paper, we first make a brief review on the fundamental properties of artificial neural networks (ANN) and the basic models, and explore emphatically some potential application of artificial neural networks in the area of product quality diagnosis, prediction and control, state supervision and classification, factor recognition, and expert system based diagnosis, then set up the ANN models and expert system for quality forecasting, monitoring and diagnosing. We point out that combining ANN with other techniques will have the broad development and application of perspectives. Finally, the paper gives out some practical applications for the models and the system.展开更多
To improve the computational efficiency of the reliability-based design optimization(RBDO) of flexible mechanism, particle swarm optimization-advanced extremum response surface method(PSO-AERSM) was proposed by integr...To improve the computational efficiency of the reliability-based design optimization(RBDO) of flexible mechanism, particle swarm optimization-advanced extremum response surface method(PSO-AERSM) was proposed by integrating particle swarm optimization(PSO) algorithm and advanced extremum response surface method(AERSM). Firstly, the AERSM was developed and its mathematical model was established based on artificial neural network, and the PSO algorithm was investigated. And then the RBDO model of flexible mechanism was presented based on AERSM and PSO. Finally, regarding cross-sectional area as design variable, the reliability optimization of flexible mechanism was implemented subject to reliability degree and uncertainties based on the proposed approach. The optimization results show that the cross-section sizes obviously reduce by 22.96 mm^2 while keeping reliability degree. Through the comparison of methods, it is demonstrated that the AERSM holds high computational efficiency while keeping computational precision for the RBDO of flexible mechanism, and PSO algorithm minimizes the response of the objective function. The efforts of this work provide a useful sight for the reliability optimization of flexible mechanism, and enrich and develop the reliability theory as well.展开更多
文摘Current design method for circular sliding slopes is not so reasonable that it often results in slope (sliding.) As a result, artificial neural network (ANN) is used to establish an artificial neural network based inverse design method for circular sliding slopes. A sample set containing 21 successful circular sliding slopes excavated in the past is used to train the network. A test sample of 3 successful circular sliding slopes excavated in the past is used to test the trained network. The test results show that the ANN based inverse design method is valid and can be applied to the design of circular sliding slopes.
文摘Now, a rapidly growing concern for the environmental protection and resource utilization has stimulated many new activities in the in dustrialized world for coping with urgent environmental problems created by the steadily increasing consumption of industrial products. Increasingly stringent r egulations and widely expressed public concern for the environment highlight the importance of disposing solid waste generated from industrial and consumable pr oducts. How to efficiently recycle and tackle this problem has been a very impo rtant issue over the world. Designing products for recyclability is driven by environmental and economic goals. To obtain good recyclability, two measures can be adopted. One is better recycling strategy and technology; the other is design for recycling (DFR). The recycling strategies of products generally inclu de: reuse, service, remanufacturing, recycling of production scraps during the p roduct usage, recycle (separation first) and disposal. Recyclability assessment is a very important content in DFR. This paper first discusses the content of D FR and strategies and types related to products recyclability, and points out th at easy or difficult recyclability depends on the design phase. Then method and procedure of recyclability assessment based on ANN is explored in detail. The pr ocess consists of selection of the ANN input and output parameters, control of t he sample quality and construction and training of the neural network. At la st, the case study shows this method is simple and operative.
文摘Prediction of surface finish in turning process is a difficult but important task. Artificial Neural Networks (ANN) can reliably pred ict the surface finish but require a lot of training data. To overcome this prob lem, an expert system approach is proposed, wherein it will be possible to predi ct the surface finish from limited experiments. The expert system contains a kno wledge base prepared from machining data handbooks and number of experiments con ducted by turning steel rods, over a wide range of cutting parameters. With this knowledge base, the expert system predicts surface finish for different tool-w ork-piece combinations, by carrying out few experiments for each case. The prop osed expert system model is validated by carrying out a number of experiments.
文摘In order to study intelligent fault diagnosis methods based on fuzzy neural network (NN) expert system and build up intelligent fault diagnosis for a type of missile weapon system, the concrete implementation of a fuzzy NN fault diagnosis expert system is given in this paper. Based on thorough research of knowledge presentation, the intelligent fault diagnosis system is implemented with artificial intelligence for a large-scale missile weapon equipment. The method is an effective way to perform fuzzy fault diagnosis. Moreover, it provides a new way of the fault diagnosis for large-scale missile weapon equipment.
文摘In this paper, we first make a brief review on the fundamental properties of artificial neural networks (ANN) and the basic models, and explore emphatically some potential application of artificial neural networks in the area of product quality diagnosis, prediction and control, state supervision and classification, factor recognition, and expert system based diagnosis, then set up the ANN models and expert system for quality forecasting, monitoring and diagnosing. We point out that combining ANN with other techniques will have the broad development and application of perspectives. Finally, the paper gives out some practical applications for the models and the system.
基金Projects(51275138,51475025)supported by the National Natural Science Foundation of ChinaProject(12531109)supported by the Science Foundation of Heilongjiang Provincial Department of Education,China+1 种基金Projects(XJ2015002,G-YZ90)supported by Hong Kong Scholars Program,ChinaProject(2015M580037)supported by Postdoctoral Science Foundation of China
文摘To improve the computational efficiency of the reliability-based design optimization(RBDO) of flexible mechanism, particle swarm optimization-advanced extremum response surface method(PSO-AERSM) was proposed by integrating particle swarm optimization(PSO) algorithm and advanced extremum response surface method(AERSM). Firstly, the AERSM was developed and its mathematical model was established based on artificial neural network, and the PSO algorithm was investigated. And then the RBDO model of flexible mechanism was presented based on AERSM and PSO. Finally, regarding cross-sectional area as design variable, the reliability optimization of flexible mechanism was implemented subject to reliability degree and uncertainties based on the proposed approach. The optimization results show that the cross-section sizes obviously reduce by 22.96 mm^2 while keeping reliability degree. Through the comparison of methods, it is demonstrated that the AERSM holds high computational efficiency while keeping computational precision for the RBDO of flexible mechanism, and PSO algorithm minimizes the response of the objective function. The efforts of this work provide a useful sight for the reliability optimization of flexible mechanism, and enrich and develop the reliability theory as well.