图像压缩感知能从低采样观测中重建出高质量图像。将深度学习应用于图像压缩感知,可显著提高图像重建质量。然而,基于深度学习的图像压缩感知方法存在模型可解释性差、结构盲目设计而影响重建性能的问题。针对这些问题,提出了一种基于...图像压缩感知能从低采样观测中重建出高质量图像。将深度学习应用于图像压缩感知,可显著提高图像重建质量。然而,基于深度学习的图像压缩感知方法存在模型可解释性差、结构盲目设计而影响重建性能的问题。针对这些问题,提出了一种基于零值域分解的深度图像压缩感知方法(range-null space decomposition based deep image compressive sensing network,RND-Net)。该方法通过全局卷积采样的方式稀疏感知图像的特征信息,通过学习信号相关的采样矩阵,使采样值包含更丰富的图像特征,且相较一般的逐块采样方式,在全局层面上的采样可明显减少块状伪影;基于零值域分解的数学表示,将采样与重建过程转化为端到端深度学习模型,借助深度神经网络拟合所涉及的线性或非线性运算,相比传统方法缩短了模型推理时间,提升了图像重建能力。上述将数学先验知识有效融入数据驱动的方法称为协同驱动,既充分利用了数学先验知识,强化了模型的可解释性,使模型结构更易于设计,又发挥了以深度学习为代表的数据驱动方法的自主寻优能力,相比其他深度压缩感知方法更易于获得全局最优解。在多个测试集上的实验证明,RND-Net与目前图像重建能力较好的算法相比显著提升了图像重建质量,减少了单幅图像重建时间。当采样率为0.1、测试集为BSDS68时,RND-Net比AutoBCS在峰值信噪比(PSNR)上平均高1.02 dB。在测试集Set14上,RND-Net对于混合驱动的GPX-ADMM-Net的平均PSNR和结构相似性指数(SSIM)增益分别为1.15dB和0.0518;重建单幅图像时,RND-Net比GPX-ADMM-Net快约0.1049 s。展开更多
Deep learning based recommendation methods, such as the recurrent neural network based recommendation method(RNNRec) and the gated recurrent unit(GRU) based recommendation method(GRURec), are proposed to solve the pro...Deep learning based recommendation methods, such as the recurrent neural network based recommendation method(RNNRec) and the gated recurrent unit(GRU) based recommendation method(GRURec), are proposed to solve the problem of time heterogeneous feedback recommendation. These methods out-perform several state-of-the-art methods. However, in RNNRec and GRURec, action vectors and item vectors are shared among users. The different meanings of the same action for different users are not considered. Similarly, different user preference for the same item is also ignored. To address this problem, the models of RNNRec and GRURec are modified in this paper. In the proposed methods, action vectors and item vectors are transformed into the user space for each user firstly, and then the transformed vectors are fed into the original neural networks of RNNRec and GRURec. The transformed action vectors and item vectors represent the user specified meaning of actions and the preference for items, which makes the proposed method obtain more accurate recommendation results. The experimental results on two real-life datasets indicate that the proposed method outperforms RNNRec and GRURec as well as other state-of-the-art approaches in most cases.展开更多
文摘图像压缩感知能从低采样观测中重建出高质量图像。将深度学习应用于图像压缩感知,可显著提高图像重建质量。然而,基于深度学习的图像压缩感知方法存在模型可解释性差、结构盲目设计而影响重建性能的问题。针对这些问题,提出了一种基于零值域分解的深度图像压缩感知方法(range-null space decomposition based deep image compressive sensing network,RND-Net)。该方法通过全局卷积采样的方式稀疏感知图像的特征信息,通过学习信号相关的采样矩阵,使采样值包含更丰富的图像特征,且相较一般的逐块采样方式,在全局层面上的采样可明显减少块状伪影;基于零值域分解的数学表示,将采样与重建过程转化为端到端深度学习模型,借助深度神经网络拟合所涉及的线性或非线性运算,相比传统方法缩短了模型推理时间,提升了图像重建能力。上述将数学先验知识有效融入数据驱动的方法称为协同驱动,既充分利用了数学先验知识,强化了模型的可解释性,使模型结构更易于设计,又发挥了以深度学习为代表的数据驱动方法的自主寻优能力,相比其他深度压缩感知方法更易于获得全局最优解。在多个测试集上的实验证明,RND-Net与目前图像重建能力较好的算法相比显著提升了图像重建质量,减少了单幅图像重建时间。当采样率为0.1、测试集为BSDS68时,RND-Net比AutoBCS在峰值信噪比(PSNR)上平均高1.02 dB。在测试集Set14上,RND-Net对于混合驱动的GPX-ADMM-Net的平均PSNR和结构相似性指数(SSIM)增益分别为1.15dB和0.0518;重建单幅图像时,RND-Net比GPX-ADMM-Net快约0.1049 s。
基金supported by the National Natural Science Foundation of China(61403350)。
文摘Deep learning based recommendation methods, such as the recurrent neural network based recommendation method(RNNRec) and the gated recurrent unit(GRU) based recommendation method(GRURec), are proposed to solve the problem of time heterogeneous feedback recommendation. These methods out-perform several state-of-the-art methods. However, in RNNRec and GRURec, action vectors and item vectors are shared among users. The different meanings of the same action for different users are not considered. Similarly, different user preference for the same item is also ignored. To address this problem, the models of RNNRec and GRURec are modified in this paper. In the proposed methods, action vectors and item vectors are transformed into the user space for each user firstly, and then the transformed vectors are fed into the original neural networks of RNNRec and GRURec. The transformed action vectors and item vectors represent the user specified meaning of actions and the preference for items, which makes the proposed method obtain more accurate recommendation results. The experimental results on two real-life datasets indicate that the proposed method outperforms RNNRec and GRURec as well as other state-of-the-art approaches in most cases.