期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Low-complexity signal detection for massive MIMO systems via trace iterative method
1
作者 IMRAN A.Khoso ZHANG Xiaofei +2 位作者 ABDUL Hayee Shaikh IHSAN A.Khoso ZAHEER Ahmed Dayo 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期549-557,共9页
Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which ent... Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which entails high complexity.To avoid the exact matrix inversion,a considerable number of implicit and explicit approximate matrix inversion based detection methods is proposed.By combining the advantages of both the explicit and the implicit matrix inversion,this paper introduces a new low-complexity signal detection algorithm.Firstly,the relationship between implicit and explicit techniques is analyzed.Then,an enhanced Newton iteration method is introduced to realize an approximate MMSE detection for massive MIMO uplink systems.The proposed improved Newton iteration significantly reduces the complexity of conventional Newton iteration.However,its complexity is still high for higher iterations.Thus,it is applied only for first two iterations.For subsequent iterations,we propose a novel trace iterative method(TIM)based low-complexity algorithm,which has significantly lower complexity than higher Newton iterations.Convergence guarantees of the proposed detector are also provided.Numerical simulations verify that the proposed detector exhibits significant performance enhancement over recently reported iterative detectors and achieves close-to-MMSE performance while retaining the low-complexity advantage for systems with hundreds of antennas. 展开更多
关键词 signal detection LOW-COMPLEXITY linear minimum mean square error(MMSE) massive multiple-input multiple-output(MIMO) trace iterative method(TIM)
在线阅读 下载PDF
Energy-efficient resource management for CCFD massive MIMO systems in 6G networks 被引量:1
2
作者 SU Yumeng GAO Hongyuan ZHANG Shibo 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第4期877-886,共10页
This paper presents a co-time co-frequency fullduplex(CCFD)massive multiple-input multiple-output(MIMO)system to meet high spectrum efficiency requirements for beyond the fifth-generation(5G)and the forthcoming the si... This paper presents a co-time co-frequency fullduplex(CCFD)massive multiple-input multiple-output(MIMO)system to meet high spectrum efficiency requirements for beyond the fifth-generation(5G)and the forthcoming the sixth-generation(6G)networks.To achieve equilibrium of energy consumption,system resource utilization,and overall transmission capacity,an energy-efficient resource management strategy concerning power allocation and antenna selection is designed.A continuous quantum-inspired termite colony optimization(CQTCO)algorithm is proposed as a solution to the resource management considering the communication reliability while promoting energy conservation for the CCFD massive MIMO system.The effectiveness of CQTCO compared with other algorithms is evaluated through simulations.The results reveal that the proposed resource management scheme under CQTCO can obtain a superior performance in different communication scenarios,which can be considered as an eco-friendly solution for promoting reliable and efficient communication in future wireless networks. 展开更多
关键词 the sixth-generation(6G) massive multiple-input multiple-output(MIMO) co-time co-frequency full-duplex ENERGY-EFFICIENT resource management
在线阅读 下载PDF
Hybrid orthogonal and non-orthogonal pilot distribution based channel estimation in massive MIMO system 被引量:1
3
作者 ZHANG Ruoyu ZHAO Honglin +1 位作者 ZHANG Jiayan JIA Shaobo 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第5期881-898,共18页
How to obtain accurate channel state information(CSI)at the transmitter with less pilot overhead for frequency division duplexing(FDD) massive multiple-input multiple-output(MIMO)system is a challenging issue due to t... How to obtain accurate channel state information(CSI)at the transmitter with less pilot overhead for frequency division duplexing(FDD) massive multiple-input multiple-output(MIMO)system is a challenging issue due to the large number of antennas. To reduce the overwhelming pilot overhead, a hybrid orthogonal and non-orthogonal pilot distribution at the base station(BS),which is a generalization of the existing pilot distribution scheme,is proposed by exploiting the common sparsity of channel due to the compact antenna arrangement. Then the block sparsity for antennas with hybrid pilot distribution is derived respectively and can be used to obtain channel impulse response. By employing the theoretical analysis of block sparse recovery, the total coherence criterion is proposed to optimize the sensing matrix composed by orthogonal pilots. Due to the huge complexity of optimal pilot acquisition, a genetic algorithm based pilot allocation(GAPA) algorithm is proposed to acquire optimal pilot distribution locations with fast convergence. Furthermore, the Cramer Rao lower bound is derived for non-orthogonal pilot-based channel estimation and can be asymptotically approached by the prior support set, especially when the optimized pilot is employed. 展开更多
关键词 massive multiple-input multiple-output(MIMO) frequency division duplexing(FDD) compressed sensing hybrid pilot distribution genetic algorithm based pilot allocation(GAPA)
在线阅读 下载PDF
Component fault diagnosis for nonlinear systems
4
作者 Junjie Huang Zhen Jiang Junwei Zhao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第6期1283-1290,共8页
In the field of fault diagnosis, the state equation of nonlinear system, including the actuator and the component, has been established. When the faults in the system appear, it is difficult to observe the fault isola... In the field of fault diagnosis, the state equation of nonlinear system, including the actuator and the component, has been established. When the faults in the system appear, it is difficult to observe the fault isolation between the actuator and the component. In order to diagnose the component fault in the nonlinear systems, a novel strategy is proposed. The nonlinear state equation with only the component system is built on mathematical equations. The nonlinearity of the component equation is expanded and estimated with Taylor series. If the actuator is perfect, the anomaly of the state equations reflects the component fault. The fault feature index is defined to detect the component fault and the initial fault. The numerical examples of the component faults are simulated for multiple-input multiple-output(MIMO)nonlinear systems. The results show that the component faults,as well as the incipient faults, can be detected. Furthermore, the effectiveness of the proposed strategy is verified. This method can also provide a foundation for the component fault reconfiguration control. 展开更多
关键词 multiple-input multiple-output(MIMO) nonlinear systems component faults fault feature index fault diagnosis
在线阅读 下载PDF
Deep residual systolic network for massive MIMO channel estimation by joint training strategies of mixed-SNR and mixed-scenarios
5
作者 SUN Meng JING Qingfeng ZHONG Weizhi 《Journal of Systems Engineering and Electronics》 2025年第4期903-913,共11页
The fifth-generation (5G) communication requires a highly accurate estimation of the channel state information (CSI)to take advantage of the massive multiple-input multiple-output(MIMO) system. However, traditional ch... The fifth-generation (5G) communication requires a highly accurate estimation of the channel state information (CSI)to take advantage of the massive multiple-input multiple-output(MIMO) system. However, traditional channel estimation methods do not always yield reliable estimates. The methodology of this paper consists of deep residual shrinkage network (DRSN)neural network-based method that is used to solve this problem.Thus, the channel estimation approach, based on DRSN with its learning ability of noise-containing data, is first introduced. Then,the DRSN is used to train the noise reduction process based on the results of the least square (LS) channel estimation while applying the pilot frequency subcarriers, where the initially estimated subcarrier channel matrix is considered as a three-dimensional tensor of the DRSN input. Afterward, a mixed signal to noise ratio (SNR) training data strategy is proposed based on the learning ability of DRSN under different SNRs. Moreover, a joint mixed scenario training strategy is carried out to test the multi scenarios robustness of DRSN. As for the findings, the numerical results indicate that the DRSN method outperforms the spatial-frequency-temporal convolutional neural networks (SF-CNN)with similar computational complexity and achieves better advantages in the full SNR range than the minimum mean squared error (MMSE) estimator with a limited dataset. Moreover, the DRSN approach shows robustness in different propagation environments. 展开更多
关键词 massive multiple-input multiple-output(MIMO) channel estimation deep residual shrinkage network(DRSN) deep convolutional neural network(CNN).
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部