A projection pursuit model is presented in this paper for comprehensive evaluation of benefits of small watershed control.By using the model,small watershed control samples with many benefit evaluation indexes can be ...A projection pursuit model is presented in this paper for comprehensive evaluation of benefits of small watershed control.By using the model,small watershed control samples with many benefit evaluation indexes can be synthesized projective values with one dimension.The samples can be naturally evaluated according to the projective values.The parameters of the model is optimized by using real coding beased accelerating genetic aglrothm,which overcomes the shortcomings of large computation amount and difficulty of computer programming in traditional projection prusuit methods,and provides a new way for wide applications of projection pursuit technique to different evaluation problems in agricultural systems engineering.展开更多
将BP神经网络与K-最近邻(KNN)算法耦合起来,建立BK(BP-KNN)模型,该模型以前期模拟流量和相应影响要素作为BP神经网络的输入,出口断面流量作为网络输出,对产汇流过程进行模拟;采用K-最近邻算法,基于历史样本的模拟误差和相应影响要素对...将BP神经网络与K-最近邻(KNN)算法耦合起来,建立BK(BP-KNN)模型,该模型以前期模拟流量和相应影响要素作为BP神经网络的输入,出口断面流量作为网络输出,对产汇流过程进行模拟;采用K-最近邻算法,基于历史样本的模拟误差和相应影响要素对网络输出进行修正,实现了非实时校正模式下的连续模拟。根据BK模型的计算流程将其参数分为3个层次,各层次分别使用NSGA-Ⅱ多目标优化算法进行参数优选,提高了模拟精度、优化效率和网络泛化能力。分别将新安江模型的产流、产流分水源计算模块与BK模型相耦合,建立XBK(Xinanjiang runoff production-BK)和XSBK(Xinanjiang runoff production and separation-BK)模型,在呈村等3个不同类型的流域应用新安江模型、BK模型、XBK模型和XSBK模型进行模拟精度比较,结果表明改进的模型模拟精度更高,较好地解决了神经网络模型在水文模拟中存在的问题。展开更多
基金Foundation Item:Chinese N ational Natural Science Fund and Yantze Water Resouces Comm ission U nion Project(N o.5 0 0 996 2 0 ) Chinese National N atural Science Fund Project(No.4 98710 18)
文摘A projection pursuit model is presented in this paper for comprehensive evaluation of benefits of small watershed control.By using the model,small watershed control samples with many benefit evaluation indexes can be synthesized projective values with one dimension.The samples can be naturally evaluated according to the projective values.The parameters of the model is optimized by using real coding beased accelerating genetic aglrothm,which overcomes the shortcomings of large computation amount and difficulty of computer programming in traditional projection prusuit methods,and provides a new way for wide applications of projection pursuit technique to different evaluation problems in agricultural systems engineering.
文摘将BP神经网络与K-最近邻(KNN)算法耦合起来,建立BK(BP-KNN)模型,该模型以前期模拟流量和相应影响要素作为BP神经网络的输入,出口断面流量作为网络输出,对产汇流过程进行模拟;采用K-最近邻算法,基于历史样本的模拟误差和相应影响要素对网络输出进行修正,实现了非实时校正模式下的连续模拟。根据BK模型的计算流程将其参数分为3个层次,各层次分别使用NSGA-Ⅱ多目标优化算法进行参数优选,提高了模拟精度、优化效率和网络泛化能力。分别将新安江模型的产流、产流分水源计算模块与BK模型相耦合,建立XBK(Xinanjiang runoff production-BK)和XSBK(Xinanjiang runoff production and separation-BK)模型,在呈村等3个不同类型的流域应用新安江模型、BK模型、XBK模型和XSBK模型进行模拟精度比较,结果表明改进的模型模拟精度更高,较好地解决了神经网络模型在水文模拟中存在的问题。