Chloride-induced corrosion of the reinforcement is considered as one of the major mechanisms resulting in the reduction of structural resistance of reinforced concrete structural elements located in marine and other a...Chloride-induced corrosion of the reinforcement is considered as one of the major mechanisms resulting in the reduction of structural resistance of reinforced concrete structural elements located in marine and other aggressive environments. A study of reinforced concrete structures located at the Fangcheng dock in the Beibu Gulf port, China, was present. The result from field survey indicates that the concrete cover depth and chloride diffusion coefficient fit best normal distribution and lognormal distribution, respectively. The service life of structure is about 55 a, while initiation time is 45 a. Sensitivity analysis indicates that the most influential factor of the structure service life prediction is concrete cover, followed by diffusion coefficient, diffusion decay index, critical chloride concentration, surface chloride concentration, current density and localized pitting corrosion. Finally, the effects of diffusion decay index and critical chloride concentration on structure service life prediction are discussed.展开更多
The ocean is one of the essential fields of national defense in the future,and more and more attention is paid to the lightweight research of Marine equipment and materials.This study it is to develop a Machine learni...The ocean is one of the essential fields of national defense in the future,and more and more attention is paid to the lightweight research of Marine equipment and materials.This study it is to develop a Machine learning(ML)-based prediction method to study the evolution of the mechanical properties of Al-Li alloys in the marine environment.We obtained the mechanical properties of Al-Li alloy samples under uniaxial tensile deformation at different exposure times through Marine exposure experiments.We obtained the strain evolution by digital image correlation(DIC).The strain field images are voxelized using 2D-Convolutional Neural Networks(CNN)autoencoders as input data for Long Short-Term Memory(LSTM)neural networks.Then,the output data of LSTM neural networks combined with corrosion features were input into the Back Propagation(BP)neural network to predict the mechanical properties of Al-Li alloys.The main conclusions are as follows:1.The variation law of mechanical properties of2297-T8 in the Marine atmosphere is revealed.With the increase in outdoor exposure test time,the tensile elastic model of 2297-T8 changes slowly,within 10%,and the tensile yield stress changes significantly,with a maximum attenuation of 23.6%.2.The prediction model can predict the strain evolution and mechanical response simultaneously with an error of less than 5%.3.This study shows that a CNN/LSTM system based on machine learning can be built to capture the corrosion characteristics of Marine exposure experiments.The results show that the relationship between corrosion characteristics and mechanical response can be predicted without considering the microstructure evolution of metal materials.展开更多
Urea,paracetamol and glutamine(based on the expired drugs)were selected as vapor-phase corrosion inhibitors(VCIs)to study their corrosion protection effect on red copper in simulated marine atmospheric environment by ...Urea,paracetamol and glutamine(based on the expired drugs)were selected as vapor-phase corrosion inhibitors(VCIs)to study their corrosion protection effect on red copper in simulated marine atmospheric environment by using weight loss,electrochemical measurement techniques(specially designed electrochemical testing device for simulating marine atmospheric environments)and surface morphology characterization analysis(SEM/EDS,XRD,RAMAN,XPS).Weight loss results show that the three corrosion inhibitors have good corrosion inhibition effect on red copper,and the corrosion inhibition efficiency in the order of glutamine(83.62%)>urea(68.46%)>paracetamol(61.47%).Surface morphology characterization analysis provides evidence of adsorption of corrosion inhibitors molecules on the red copper surface,thus forming a protective film that blocked the red copper surface from the aggressive chloride ion attack.展开更多
In this investigation,we examined the high-temperature corrosion behavior of three nickel-based single-crystal superalloys subjected to a mixed molten salt environment of Na_(2)SO_(4)and NaCl at 700℃,leading to a pre...In this investigation,we examined the high-temperature corrosion behavior of three nickel-based single-crystal superalloys subjected to a mixed molten salt environment of Na_(2)SO_(4)and NaCl at 700℃,leading to a preliminary elucidation of their molten salt corrosion mechanisms.By further comparing the corrosion degree of the three nickel-based single-crystal superalloys combined with the Gibbs free energy calculation of the corrosion products,the influence of alloying elements on the corrosion performance of nickel-based single-crystal superalloys was analyzed.It was established that the corrosion mechanism of these nickel-based single-crystal superalloys predominantly involves a cyclic process of oxide layer formation and decomposition,ultimately resulting in the establishment of a protective layer principally composed of NiO,with a constantly regenerating Al2O3 barrier,impeding further alloy degradation.Furthermore,the inclusion of elements such as Cr,Al,Ta,and notably Re has been found to markedly improve the thermal corrosion resistance of the superalloys.These insights not only enhance our comprehension of the corrosion mechanisms pertinent to nickel-based superalloys,but also provide strategic directions for alloy composition refinement aimed at bolstering their corrosion resilience.展开更多
Corrosion test data were measured using non-destructive electrochemical techniques and analysed for studying inhibition effectiveness by different concentrations of NazCr207 on the corrosion of concrete steel-rehar in...Corrosion test data were measured using non-destructive electrochemical techniques and analysed for studying inhibition effectiveness by different concentrations of NazCr207 on the corrosion of concrete steel-rehar in NaC1 and in H2SO4 media. For these, specifications of ASTM G16-95 R04 were combined with the normal and the Gumbel probability density functions as model analytical methods for addressing issues of conflicting reports of inhibitor effectiveness that had generated concerns. Results show that reinforced concrete samples admixed with concentrations having 4 g (0.012 7 tool), 8 g (0.025 4 mol) and 6 g (0.019 l tool) NaaCr207 exhibited, in that order, high inhibition effectiveness, with respective efficiency, r/, of (90.46±1.30)%, (88.41+2.24)% and (84.87±4.74)%, in the NaC1 medium. These exhibit good agreements within replicates and statistical methods for the samples. Also, optimal inhibition effectiveness model in the H2SO4 medium was exhibited by 8 g (0.025 4 mol) Na2Cr207 concentration having r/=(78.44±1.10)%. These bear implications for addressing conflicting test data in the study of effective inhibitors for mitigating steel-rebar corrosion in aggressive environments.展开更多
基金Project(41274012) supported by the National Natural Science Foundation of China
文摘Chloride-induced corrosion of the reinforcement is considered as one of the major mechanisms resulting in the reduction of structural resistance of reinforced concrete structural elements located in marine and other aggressive environments. A study of reinforced concrete structures located at the Fangcheng dock in the Beibu Gulf port, China, was present. The result from field survey indicates that the concrete cover depth and chloride diffusion coefficient fit best normal distribution and lognormal distribution, respectively. The service life of structure is about 55 a, while initiation time is 45 a. Sensitivity analysis indicates that the most influential factor of the structure service life prediction is concrete cover, followed by diffusion coefficient, diffusion decay index, critical chloride concentration, surface chloride concentration, current density and localized pitting corrosion. Finally, the effects of diffusion decay index and critical chloride concentration on structure service life prediction are discussed.
基金supported by the Southwest Institute of Technology and Engineering cooperation fund(Grant No.HDHDW5902020104)。
文摘The ocean is one of the essential fields of national defense in the future,and more and more attention is paid to the lightweight research of Marine equipment and materials.This study it is to develop a Machine learning(ML)-based prediction method to study the evolution of the mechanical properties of Al-Li alloys in the marine environment.We obtained the mechanical properties of Al-Li alloy samples under uniaxial tensile deformation at different exposure times through Marine exposure experiments.We obtained the strain evolution by digital image correlation(DIC).The strain field images are voxelized using 2D-Convolutional Neural Networks(CNN)autoencoders as input data for Long Short-Term Memory(LSTM)neural networks.Then,the output data of LSTM neural networks combined with corrosion features were input into the Back Propagation(BP)neural network to predict the mechanical properties of Al-Li alloys.The main conclusions are as follows:1.The variation law of mechanical properties of2297-T8 in the Marine atmosphere is revealed.With the increase in outdoor exposure test time,the tensile elastic model of 2297-T8 changes slowly,within 10%,and the tensile yield stress changes significantly,with a maximum attenuation of 23.6%.2.The prediction model can predict the strain evolution and mechanical response simultaneously with an error of less than 5%.3.This study shows that a CNN/LSTM system based on machine learning can be built to capture the corrosion characteristics of Marine exposure experiments.The results show that the relationship between corrosion characteristics and mechanical response can be predicted without considering the microstructure evolution of metal materials.
基金Project(ZR2023ME063)supported by the Shandong Provincial Natural Science Foundation,ChinaProject(121311KYSB20210005)supported by the Overseas Science and Education Cooperation Center Deployment Project,ChinaProject supported by the Qingdao Expert Workstation for Intelligent Anticorrosion for Water Diversion Project,China。
文摘Urea,paracetamol and glutamine(based on the expired drugs)were selected as vapor-phase corrosion inhibitors(VCIs)to study their corrosion protection effect on red copper in simulated marine atmospheric environment by using weight loss,electrochemical measurement techniques(specially designed electrochemical testing device for simulating marine atmospheric environments)and surface morphology characterization analysis(SEM/EDS,XRD,RAMAN,XPS).Weight loss results show that the three corrosion inhibitors have good corrosion inhibition effect on red copper,and the corrosion inhibition efficiency in the order of glutamine(83.62%)>urea(68.46%)>paracetamol(61.47%).Surface morphology characterization analysis provides evidence of adsorption of corrosion inhibitors molecules on the red copper surface,thus forming a protective film that blocked the red copper surface from the aggressive chloride ion attack.
基金Project(2022QNRC001) supported by the Young Elite Scientists Sponsorship Program by China Association for Science and TechnologyProject supported by the State Key Laboratory of Powder Metallurgy,China。
文摘In this investigation,we examined the high-temperature corrosion behavior of three nickel-based single-crystal superalloys subjected to a mixed molten salt environment of Na_(2)SO_(4)and NaCl at 700℃,leading to a preliminary elucidation of their molten salt corrosion mechanisms.By further comparing the corrosion degree of the three nickel-based single-crystal superalloys combined with the Gibbs free energy calculation of the corrosion products,the influence of alloying elements on the corrosion performance of nickel-based single-crystal superalloys was analyzed.It was established that the corrosion mechanism of these nickel-based single-crystal superalloys predominantly involves a cyclic process of oxide layer formation and decomposition,ultimately resulting in the establishment of a protective layer principally composed of NiO,with a constantly regenerating Al2O3 barrier,impeding further alloy degradation.Furthermore,the inclusion of elements such as Cr,Al,Ta,and notably Re has been found to markedly improve the thermal corrosion resistance of the superalloys.These insights not only enhance our comprehension of the corrosion mechanisms pertinent to nickel-based superalloys,but also provide strategic directions for alloy composition refinement aimed at bolstering their corrosion resilience.
文摘Corrosion test data were measured using non-destructive electrochemical techniques and analysed for studying inhibition effectiveness by different concentrations of NazCr207 on the corrosion of concrete steel-rehar in NaC1 and in H2SO4 media. For these, specifications of ASTM G16-95 R04 were combined with the normal and the Gumbel probability density functions as model analytical methods for addressing issues of conflicting reports of inhibitor effectiveness that had generated concerns. Results show that reinforced concrete samples admixed with concentrations having 4 g (0.012 7 tool), 8 g (0.025 4 mol) and 6 g (0.019 l tool) NaaCr207 exhibited, in that order, high inhibition effectiveness, with respective efficiency, r/, of (90.46±1.30)%, (88.41+2.24)% and (84.87±4.74)%, in the NaC1 medium. These exhibit good agreements within replicates and statistical methods for the samples. Also, optimal inhibition effectiveness model in the H2SO4 medium was exhibited by 8 g (0.025 4 mol) Na2Cr207 concentration having r/=(78.44±1.10)%. These bear implications for addressing conflicting test data in the study of effective inhibitors for mitigating steel-rebar corrosion in aggressive environments.