OBJECTIVE To investigate the intervention effects of tissue-bone homeostasis manipulation(TBHM)on peripatellar biomechanical parameters and knee joint function in knee osteoarthritis(KOA)patients.METHODS Sixty patient...OBJECTIVE To investigate the intervention effects of tissue-bone homeostasis manipulation(TBHM)on peripatellar biomechanical parameters and knee joint function in knee osteoarthritis(KOA)patients.METHODS Sixty patients with KOA(Kellgren-Lawrence gradeⅡ-Ⅲ)were recruited from the Acupuncture-Moxibustion Rehabilitation Department,Anhui University of Chinese Medicine between October 2024 and May 2025.Participants were randomized into a TBHM group(n=30)or a transcutaneous electrical neuromuscular stimulation(TENS)group(n=30).Using two-way repeated measures ANOVA,biomechanical indicators,including rectus femoris tension,vastus medialis tension,vastus lateralis tension,patellar ligament tension,lateral patellar displacement(LPD),medial patellar displacement(MPD),normalized patellar mobility(LPD/patellar width[PW],MPD/PW),knee flexion range of motion,and functional indicators,including KOOS subscales,time up and go test(TUGT),were compared between groups at baseline and after 6 weeks of intervention.RESULTS After intervention,all biomechanical and knee joint function indicators in the TBHM group were significantly improved(P<0.05,P<0.01),while only the vastus medialis tension,TUGT and KOOS Pain,ADL and QoL scores in the control group were significantly improved(P<0.01).The improvement amplitudes of biomechanical indicators in the TBHM group,including rectus femoris tension,vastus lateralis tension,patellar ligament tension,MPD/PW,LPD/PW and knee flexion range of motion were better than those in the control group(P<0.05,P<0.01).In the functional evaluation,the interaction effects of the TBHM group in all dimensions of the KOOS score and TUGT were statistically significant(P<0.05,P<0.01).Post-hoc simple effect analysis confirmed that there were significant differences in the above indicators between the two groups after intervention(P<0.05),and all indicators showed a significant main effect of time(P<0.01),suggesting that the intervention measures had continuous and cumulative curative effects.CONCLUSION TBHM effectively improves joint function and quality of life in KOA patients by restoring dynamic equilibrium in soft tissue tension and patellar mobility,ultimately achieving the therapeutic goal of concurrent tissue-bone management.展开更多
Optical field manipulation,an emerging frontier in photonics,demonstrates significant potential in biomedical microscopy,quantum state engineering,and micro-nano fabrication.To address the critical limitations of curr...Optical field manipulation,an emerging frontier in photonics,demonstrates significant potential in biomedical microscopy,quantum state engineering,and micro-nano fabrication.To address the critical limitations of current optical modulation technologies in achieving full-parameter precision control,we proposed a novel approach for dynamic azimuthal optical field modulation based on dual-spiral arrays.By designing spatially interleaved spiral structures with different initial radii while maintaining identical periodic parameters,we achieved continuous optical modulation spanning the full 0-2πrange in azimuthal field distribution.Through rigorous numerical simulations,we systematically established a quantitative correlation between the structural parameters and azimuthal optical field patterns,revealing,for the first time,a quasi-linear relationship between the radius difference and the resultant optical distribution.This theoretical framework advances our fundamental understanding of structured optical field manipulation as well as provides a new paradigm for programmable photonic device design,with distinct technical advantages in super-resolution imaging and optical tweezer systems.展开更多
The ammunition loading system manipulator is susceptible to gear failure due to high-frequency,heavyload reciprocating motions and the absence of protective gear components.After a fault occurs,the distribution of fau...The ammunition loading system manipulator is susceptible to gear failure due to high-frequency,heavyload reciprocating motions and the absence of protective gear components.After a fault occurs,the distribution of fault characteristics under different loads is markedly inconsistent,and data is hard to label,which makes it difficult for the traditional diagnosis method based on single-condition training to generalize to different conditions.To address these issues,the paper proposes a novel transfer discriminant neural network(TDNN)for gear fault diagnosis.Specifically,an optimized joint distribution adaptive mechanism(OJDA)is designed to solve the distribution alignment problem between two domains.To improve the classification effect within the domain and the feature recognition capability for a few labeled data,metric learning is introduced to distinguish features from different fault categories.In addition,TDNN adopts a new pseudo-label training strategy to achieve label replacement by comparing the maximum probability of the pseudo-label with the test result.The proposed TDNN is verified in the experimental data set of the artillery manipulator device,and the diagnosis can achieve 99.5%,significantly outperforming other traditional adaptation methods.展开更多
In order to obtain direct solutions of parallel manipulator without divergence in real time,a modified global Newton-Raphson(MGNR) algorithm was proposed for forward kinematics analysis of six-degree-of-freedom(DOF) p...In order to obtain direct solutions of parallel manipulator without divergence in real time,a modified global Newton-Raphson(MGNR) algorithm was proposed for forward kinematics analysis of six-degree-of-freedom(DOF) parallel manipulator.Based on geometrical frame of parallel manipulator,the highly nonlinear equations of kinematics were derived using analytical approach.The MGNR algorithm was developed for the nonlinear equations based on Tailor expansion and Newton-Raphson iteration.The procedure of MGNR algorithm was programmed in Matlab/Simulink and compiled to a real-time computer with Microsoft visual studio.NET for implementation.The performance of the MGNR algorithms for 6-DOF parallel manipulator was analyzed and confirmed.Applying the MGNR algorithm,the real generalized pose of moving platform is solved by using the set of given positions of actuators.The theoretical analysis and numerical results indicate that the presented method can achieve the numerical convergent solution in less than 1 ms with high accuracy(1×10-9 m in linear motion and 1×10-9 rad in angular motion),even the initial guess value is far from the root.展开更多
In order to present a new method for analyzing the reliability of a two-link flexible robot manipulator,Lagrange dynamics differential equations of the two-link flexible robot manipulator were established by using the...In order to present a new method for analyzing the reliability of a two-link flexible robot manipulator,Lagrange dynamics differential equations of the two-link flexible robot manipulator were established by using the integrated modal method and the multi-body system dynamics method.By using the Monte Carlo method,the random sample values of the dynamic parameters were obtained and Lagrange dynamics differential equations were solved for each random sample value which revealed their displacement,speed and acceleration.On this basis,dynamic stresses and deformations were obtained.By taking the maximum values of the stresses and the deformations as output responses and the random sample values of dynamic parameters as input quantities,extremum response surface functions were established.A number of random samples were then obtained by using the Monte Carlo method and then the reliability was analyzed by using the extremum response surface method.The results show that the extremum response surface method is an efficient and fast reliability analysis method with high-accuracy for the two-link flexible robot manipulator.展开更多
The essential requirements of the end-effector of large space manipulator are capabilities of misalignment tolerance and soft capture.According to these requirements,an end-effector prototype combining the tendon-shea...The essential requirements of the end-effector of large space manipulator are capabilities of misalignment tolerance and soft capture.According to these requirements,an end-effector prototype combining the tendon-sheath transmission system with steel cable snaring mechanism was manufactured.An analysis method based on the coordinate transformation and the projection of key points of the mechanical interface was proposed,and it was a guideline of the end-effector design.Furthermore,the tendon-sheath transmission system was employed in the capture subassembly to reduce the inertia of the capture mechanism and enlarge the capture space.The capabilities of misalignment tolerance and soft capture were validated through the dynamic simulation in ADAMS software.The results of the capture simulation and experiment show that the end-effector has outstanding capabilities of misalignment tolerance and soft capture.The translation misalignments in radial directions are±100 mm,and angular misalignments about pitch and yaw are±15°.展开更多
The dynamic modeling and solution of the 3-RRS spatial parallel manipulators with flexible links were investigated. Firstly, a new model of spatial flexible beam element was proposed, and the dynamic equations of elem...The dynamic modeling and solution of the 3-RRS spatial parallel manipulators with flexible links were investigated. Firstly, a new model of spatial flexible beam element was proposed, and the dynamic equations of elements and branches of the parallel manipulator were derived. Secondly, according to the kinematic coupling relationship between the moving platform and flexible links, the kinematic constraints of the flexible parallel manipulator were proposed. Thirdly, using the kinematic constraint equations and dynamic model of the moving platform, the overall system dynamic equations of the parallel manipulator were obtained by assembling the dynamic equations of branches. FtLrthermore, a few commonly used effective solutions of second-order differential equation system with variable coefficients were discussed. Newmark numerical method was used to solve the dynamic equations of the flexible parallel manipulator. Finally, the dynamic responses of the moving platform and driving torques of the 3-RRS parallel mechanism with flexible links were analyzed through numerical simulation. The results provide important information for analysis of dynamic performance, dynamics optimization design, dynamic simulation and control of the 3-RRS flexible parallel manipulator.展开更多
The synchronous tracking control problem of a hydraulic parallel manipulator with six degrees of freedom (DOF) is complicated since the inclusion of hydraulic elements increases the order of the system.To solve this p...The synchronous tracking control problem of a hydraulic parallel manipulator with six degrees of freedom (DOF) is complicated since the inclusion of hydraulic elements increases the order of the system.To solve this problem,cascade control method with an inner/outer-loop control structure is used,which masks the hydraulic dynamics with the inner-loop so that the designed controller takes into account of both the mechanical dynamics and the hydraulic dynamics of the manipulator.Furthermore,a cross-coupling control approach is introduced to the synchronous tracking control of the manipulator.The position synchronization error is developed by considering motion synchronization between each actuator joint and its adjacent ones based on the synchronous goal.Then,with the feedback of both position error and synchronization error,the tracking is proven to guarantee that both the position errors and synchronization errors asymptotically converge to zero.Moreover,the effectiveness of the proposed approach is verified by the experimental results performed with a 6-DOF hydraulic parallel manipulator.展开更多
Kinematics and dynamics analyses were performed for a spatial 3-revolute joint-revolute joint-clylindric pair(3-RRC) parallel manipulator.This 3-RRC parallel manipulator is composed of a moving platform,a base platfor...Kinematics and dynamics analyses were performed for a spatial 3-revolute joint-revolute joint-clylindric pair(3-RRC) parallel manipulator.This 3-RRC parallel manipulator is composed of a moving platform,a base platform,and three revolute joint-revolute joint-column pair chains which connect the moving platform and the base platform.Firstly,kinematics analysis for 3-RRC parallel manipulator was conducted.Next,on the basis of Lagrange formula,a simply-structured dynamic model of 3-RRC parallel manipulator was derived.Finally,through a calculation example,the variation of motorial parameters of this 3-RRC parallel manipulator,equivalent moment of inertia,driving force/torque and energy consumption was discussed.The research findings have important significance for research and engineering projects such as analyzing dynamic features,mechanism optimization design and control of 3-RRC parallel manipulator.展开更多
In this study,a modeling method for investigating the dynamic characteristics of a hydraulically driven shell manipulator with revolute clearance joints is presented.This model accounts for the effect of the clearance...In this study,a modeling method for investigating the dynamic characteristics of a hydraulically driven shell manipulator with revolute clearance joints is presented.This model accounts for the effect of the clearance,the flexibility of the rotating beam,and the coupled dynamic characteristics of the hydraulic cylinder.A modified contact force model was developed to simulate the physical properties of realistic revolute joints with small clearances,heavy loads,and variable contact stiffnesses and damping coefficients with variations of the indentations.Considering the strong coupling relationship between the hydraulic cylinder and the flexible beam,a system equation of motion combining the state variables of the hydraulic cylinder and mechanical system was established.The complex nonlinear friction force of the hydraulic cylinder motion was constructed using a modified Lu Gre model,and the parameters of the friction model were identified using intelligent identification algorithms.Moreover,a test system for the shell manipulator was established to achieve experimental validation.Finally,the effects of the clearance size and the stiffness of the cylinder support on the dynamic response were investigated.展开更多
A geometrical parameters optimization and reducers selection method was proposed for robotic manipulators design. The Lagrangian approach was employed in deriving the dynamic model of a two-DOF manipulator. The flexib...A geometrical parameters optimization and reducers selection method was proposed for robotic manipulators design. The Lagrangian approach was employed in deriving the dynamic model of a two-DOF manipulator. The flexibility of links and joints was taken into account in the mechanical structure dimensions optimization and reducers selection, in which Timoshenko model was used to discretize the hollow links. Two criteria, i.e. maximization of fundamental frequency and minimization of self-mass/load ratio, were utilized to optimize the manipulators. The NSGA-II (fast elitist nondominated sorting genetic algorithms) was employed to solve the multi-objective optimization problem. How the joints flexibility affects the manipulators design was analyzed and shown in the numerical analysis example. The results indicate that simultaneous consideration of the joints and the links flexibility is very necessary for manipulators optimal design. Finally, several optimal combinations were provided. The effectiveness of the optimization method was proved by comparing with ADAMS simulation results. The self-mass/load ratio error of the two methods is within 10%. The maximum error of the natural frequency by the two methods is 23.74%. The method proposed in this work provides a fast and effective pathway for manipulator design and reducers selection.展开更多
This paper focuses on the dynamic tracking control of ammunition manipulator system. A standard state space model for the ammunition manipulator electro-hydraulic system(AMEHS) with inherent nonlinearities and uncerta...This paper focuses on the dynamic tracking control of ammunition manipulator system. A standard state space model for the ammunition manipulator electro-hydraulic system(AMEHS) with inherent nonlinearities and uncertainties considered was established. To simultaneously suppress the violation of tracking error constraints and the complexity of differential explosion, a barrier Lyapunov functionsbased dynamic surface control(BLF-DSC) method was proposed for the position tracking control of the ammunition manipulator. Theoretical analysis prove the stability of the closed-loop overall system and the tracking error converges to a prescribed neighborhood asymptotically. The effectiveness and dynamic tracking performance of the proposed control strategy is validated via simulation and experimental results.展开更多
To deploy sensor nodes over the area of interest,a scheme,named node scattering manipulation,was proposed.It adopted the following method:during node scattering,the initial states of every node,including the velocity ...To deploy sensor nodes over the area of interest,a scheme,named node scattering manipulation,was proposed.It adopted the following method:during node scattering,the initial states of every node,including the velocity and direction,were manipulated so that it would land in a region with a certain probability;every sensor was relocated in order to improve the coverage and connectivity.Simultaneously,to easily analyze the process of scattering sensors,a trajectory model was also proposed.Integrating node scattering manipulation with trajectory model,the node deployment in wireless sensor network was thoroughly renovated,that is,this scheme can scatter sensors.In practice,the scheme was operable compared with the previous achievements.The simulation results demonstrate the superiority and feasibility of the scheme,and also show that the energy consumption for sensors relocation is reduced.展开更多
A decentralized adaptive neural network sliding mode position/force control scheme is proposed for constrained reconfigurable manipulators. Different from the decentralized control strategy in multi-manipulator cooper...A decentralized adaptive neural network sliding mode position/force control scheme is proposed for constrained reconfigurable manipulators. Different from the decentralized control strategy in multi-manipulator cooperation, the proposed decentralized position/force control scheme can be applied to series constrained reconfigurable manipulators. By multiplying each row of Jacobian matrix in the dynamics by contact force vector, the converted joint torque is obtained. Furthermore, using desired information of other joints instead of their actual values, the dynamics can be represented as a set of interconnected subsystems by model decomposition technique. An adaptive neural network controller is introduced to approximate the unknown dynamics of subsystem. The interconnection and the whole error term are removed by employing an adaptive sliding mode term. And then, the Lyapunov stability theory guarantees the stability of the closed-loop system. Finally, two reconfigurable manipulators with different configurations are employed to show the effectiveness of the proposed decentralized position/force control scheme.展开更多
For the position tracking control of hydraulic manipulators,a novel method of time delay control(TDC) with continuous nonsingular terminal sliding mode(CNTSM) was proposed in this work.Complex dynamics of the hydrauli...For the position tracking control of hydraulic manipulators,a novel method of time delay control(TDC) with continuous nonsingular terminal sliding mode(CNTSM) was proposed in this work.Complex dynamics of the hydraulic manipulator is approximately canceled by time delay estimation(TDE),which means the proposed method is model-free and no prior knowledge of the dynamics is required.Moreover,the CNTSM term with a fast-TSM-type reaching law ensures fast convergence and high-precision tracking control performance under heavy lumped uncertainties.Despite its considerable robustness against lumped uncertainties,the proposed control scheme is continuous and chattering-free and no pressure sensors are required in practical applications.Theoretical analysis and experimental results show that faster and higher-precision position tracking performance is achieved compared with the traditional CNTSM-based TDC method using boundary layers.展开更多
Because of its ease of implementation,a linear PID controller is generally used to control robotic manipulators.Linear controllers cannot effectively cope with uncertainties and variations in the parameters;therefore,...Because of its ease of implementation,a linear PID controller is generally used to control robotic manipulators.Linear controllers cannot effectively cope with uncertainties and variations in the parameters;therefore,nonlinear controllers with robust performance which can cope with these are recommended.The sliding mode control(SMC)is a robust state feedback control method for nonlinear systems that,in addition having a simple design,efficiently overcomes uncertainties and disturbances in the system.It also has a very fast transient response that is desirable when controlling robotic manipulators.The most critical drawback to SMC is chattering in the control input signal.To solve this problem,in this study,SMC is used with a boundary layer(SMCBL)to eliminate the chattering and improve the performance of the system.The proposed SMCBL was compared with inverse dynamic control(IDC),a conventional nonlinear control method.The kinematic and dynamic equations of the IRB-120 robot manipulator were initially extracted completely and accurately,and then the control of the robot manipulator using SMC was evaluated.For validation,the proposed control method was implemented on a 6-DOF IRB-120 robot manipulator in the presence of uncertainties.The results were simulated,tested,and compared in the MATLAB/Simulink environment.To further validate our work,the results were tested and confirmed experimentally on an actual IRB-120 robot manipulator.展开更多
Trial mountain climbing algorithm to solve the inverse kinematics problem of redundant manipulator is introduced, and a method of describing a numeral with a special numeration system is given to define the changed st...Trial mountain climbing algorithm to solve the inverse kinematics problem of redundant manipulator is introduced, and a method of describing a numeral with a special numeration system is given to define the changed step of the trail mountain climbing algorithm. The results show that a likelihood solution can be found quickly in the infinite groups of likelihood solutions within the limited search times, and need not calculate the anti trigonometric function and the inverse matrix. In addition, this algorithm has many good qualities such as concise algorithm, tiny computation, fast convergence velocity, good stability and extensive adaptability.展开更多
A novel high-speed parallel kinematic machine (PKM) named Delta-S parallel manipulator is proposed, which consists of a fixed base connected to a moving platform through three limbs with identical topology. Each lim...A novel high-speed parallel kinematic machine (PKM) named Delta-S parallel manipulator is proposed, which consists of a fixed base connected to a moving platform through three limbs with identical topology. Each limb is composed of one driving ann and one follower arm, herein, the latter includes two strings and one middle rod, all located in a same plane. Compared with similar manipulators with uniform parameters, the novel and unique topology as well as the addition of two strings of Delta-S manipulator can remove the clearance of the spherical joints, reduce the inertial load of components further, improve the positioning accuracy and dynamic performance, and so on. In order to formulate the kineto-static model of Delta-S manipulator, the kineto-static analyses and models of the driving arm, the generalized follower and the moving platform can be carried out by the D'ALEMBERT principle. For the sake of obtaining the force analytic results of strings, the deformation compatibility condition of strings and the middle rod are determined. Furthermore, in virtue of the assumption of small deformation and the linear superposition principle, the minimal pre-tightening force of the strings is calculated. The main results include that the loads of the strings and the middle rod must be larger than "zero" and the pre-tightening force over the workspace must be larger than the minimal pre-tightening force at any time within the workspace, which lay the foundation for the dynamic analysis and the prototype manufacture of the Delta-S manipulator.展开更多
A mathematical model was developed combining the dynamics of an Euler-Bernoulli beam, described by the assumed-mode method and hydraulic circuit dynamics. Only one matrix, termed drive Jacobian, was needed in the mode...A mathematical model was developed combining the dynamics of an Euler-Bernoulli beam, described by the assumed-mode method and hydraulic circuit dynamics. Only one matrix, termed drive Jacobian, was needed in the modeling of interaction between hydraulic circuit and flexible manipulator mechanism. Furthermore, a new robust controller based on mentioned above dynamic model was also considered to regulate both flexural vibrations and rigid body motion. The proposed controller combined sliding mode and backstepping techniques to deal with the nonlinear system with uncertainties. The sliding mode control was used to achieve an asymptotic joint angle and vibration regulation by providing a virtual force while the backstepping technique was used to regulate the spool position of a hydraulic valve to provide the required control force. Simulation results are presented to show the stabilizing effect and robustness of this control strategy.展开更多
文摘OBJECTIVE To investigate the intervention effects of tissue-bone homeostasis manipulation(TBHM)on peripatellar biomechanical parameters and knee joint function in knee osteoarthritis(KOA)patients.METHODS Sixty patients with KOA(Kellgren-Lawrence gradeⅡ-Ⅲ)were recruited from the Acupuncture-Moxibustion Rehabilitation Department,Anhui University of Chinese Medicine between October 2024 and May 2025.Participants were randomized into a TBHM group(n=30)or a transcutaneous electrical neuromuscular stimulation(TENS)group(n=30).Using two-way repeated measures ANOVA,biomechanical indicators,including rectus femoris tension,vastus medialis tension,vastus lateralis tension,patellar ligament tension,lateral patellar displacement(LPD),medial patellar displacement(MPD),normalized patellar mobility(LPD/patellar width[PW],MPD/PW),knee flexion range of motion,and functional indicators,including KOOS subscales,time up and go test(TUGT),were compared between groups at baseline and after 6 weeks of intervention.RESULTS After intervention,all biomechanical and knee joint function indicators in the TBHM group were significantly improved(P<0.05,P<0.01),while only the vastus medialis tension,TUGT and KOOS Pain,ADL and QoL scores in the control group were significantly improved(P<0.01).The improvement amplitudes of biomechanical indicators in the TBHM group,including rectus femoris tension,vastus lateralis tension,patellar ligament tension,MPD/PW,LPD/PW and knee flexion range of motion were better than those in the control group(P<0.05,P<0.01).In the functional evaluation,the interaction effects of the TBHM group in all dimensions of the KOOS score and TUGT were statistically significant(P<0.05,P<0.01).Post-hoc simple effect analysis confirmed that there were significant differences in the above indicators between the two groups after intervention(P<0.05),and all indicators showed a significant main effect of time(P<0.01),suggesting that the intervention measures had continuous and cumulative curative effects.CONCLUSION TBHM effectively improves joint function and quality of life in KOA patients by restoring dynamic equilibrium in soft tissue tension and patellar mobility,ultimately achieving the therapeutic goal of concurrent tissue-bone management.
文摘Optical field manipulation,an emerging frontier in photonics,demonstrates significant potential in biomedical microscopy,quantum state engineering,and micro-nano fabrication.To address the critical limitations of current optical modulation technologies in achieving full-parameter precision control,we proposed a novel approach for dynamic azimuthal optical field modulation based on dual-spiral arrays.By designing spatially interleaved spiral structures with different initial radii while maintaining identical periodic parameters,we achieved continuous optical modulation spanning the full 0-2πrange in azimuthal field distribution.Through rigorous numerical simulations,we systematically established a quantitative correlation between the structural parameters and azimuthal optical field patterns,revealing,for the first time,a quasi-linear relationship between the radius difference and the resultant optical distribution.This theoretical framework advances our fundamental understanding of structured optical field manipulation as well as provides a new paradigm for programmable photonic device design,with distinct technical advantages in super-resolution imaging and optical tweezer systems.
文摘The ammunition loading system manipulator is susceptible to gear failure due to high-frequency,heavyload reciprocating motions and the absence of protective gear components.After a fault occurs,the distribution of fault characteristics under different loads is markedly inconsistent,and data is hard to label,which makes it difficult for the traditional diagnosis method based on single-condition training to generalize to different conditions.To address these issues,the paper proposes a novel transfer discriminant neural network(TDNN)for gear fault diagnosis.Specifically,an optimized joint distribution adaptive mechanism(OJDA)is designed to solve the distribution alignment problem between two domains.To improve the classification effect within the domain and the feature recognition capability for a few labeled data,metric learning is introduced to distinguish features from different fault categories.In addition,TDNN adopts a new pseudo-label training strategy to achieve label replacement by comparing the maximum probability of the pseudo-label with the test result.The proposed TDNN is verified in the experimental data set of the artillery manipulator device,and the diagnosis can achieve 99.5%,significantly outperforming other traditional adaptation methods.
基金Project(HgdJG00401D04) supported by National 921 Manned Space Project Foundation of ChinaProject(SKLRS200803B) supported by the Self-Planned Task Foundation of State Key Laboratory of Robotics and System (HIT) of China+1 种基金Project(CDAZ98502211) supported by China’s "World Class University (985)" Project FoundationProject(50975055) supported by the National Natural Science Foundation of China
文摘In order to obtain direct solutions of parallel manipulator without divergence in real time,a modified global Newton-Raphson(MGNR) algorithm was proposed for forward kinematics analysis of six-degree-of-freedom(DOF) parallel manipulator.Based on geometrical frame of parallel manipulator,the highly nonlinear equations of kinematics were derived using analytical approach.The MGNR algorithm was developed for the nonlinear equations based on Tailor expansion and Newton-Raphson iteration.The procedure of MGNR algorithm was programmed in Matlab/Simulink and compiled to a real-time computer with Microsoft visual studio.NET for implementation.The performance of the MGNR algorithms for 6-DOF parallel manipulator was analyzed and confirmed.Applying the MGNR algorithm,the real generalized pose of moving platform is solved by using the set of given positions of actuators.The theoretical analysis and numerical results indicate that the presented method can achieve the numerical convergent solution in less than 1 ms with high accuracy(1×10-9 m in linear motion and 1×10-9 rad in angular motion),even the initial guess value is far from the root.
基金Project(2006AA04Z405)supported by the National High Technology Research and Development Program of ChinaProject(3102019)supported by Beijing Municipal Natural Science Foundation,China
文摘In order to present a new method for analyzing the reliability of a two-link flexible robot manipulator,Lagrange dynamics differential equations of the two-link flexible robot manipulator were established by using the integrated modal method and the multi-body system dynamics method.By using the Monte Carlo method,the random sample values of the dynamic parameters were obtained and Lagrange dynamics differential equations were solved for each random sample value which revealed their displacement,speed and acceleration.On this basis,dynamic stresses and deformations were obtained.By taking the maximum values of the stresses and the deformations as output responses and the random sample values of dynamic parameters as input quantities,extremum response surface functions were established.A number of random samples were then obtained by using the Monte Carlo method and then the reliability was analyzed by using the extremum response surface method.The results show that the extremum response surface method is an efficient and fast reliability analysis method with high-accuracy for the two-link flexible robot manipulator.
基金Project(2006AA04Z228) supported by National Hi-tech Research and Development Program of China
文摘The essential requirements of the end-effector of large space manipulator are capabilities of misalignment tolerance and soft capture.According to these requirements,an end-effector prototype combining the tendon-sheath transmission system with steel cable snaring mechanism was manufactured.An analysis method based on the coordinate transformation and the projection of key points of the mechanical interface was proposed,and it was a guideline of the end-effector design.Furthermore,the tendon-sheath transmission system was employed in the capture subassembly to reduce the inertia of the capture mechanism and enlarge the capture space.The capabilities of misalignment tolerance and soft capture were validated through the dynamic simulation in ADAMS software.The results of the capture simulation and experiment show that the end-effector has outstanding capabilities of misalignment tolerance and soft capture.The translation misalignments in radial directions are±100 mm,and angular misalignments about pitch and yaw are±15°.
基金Projects(50875002, 60705036) supported by the National Natural Science Foundation of ChinaProject(3062004) supported by Beijing Natural Science Foundation, China+1 种基金Project(20070104) supported by the Key Laboratory of Complex Systems and Intelligence Science, Institute of Automation, Chinese Academy of SciencesProject(2009AA04Z415) supported by the National High-Tech Research and Development Program of China
文摘The dynamic modeling and solution of the 3-RRS spatial parallel manipulators with flexible links were investigated. Firstly, a new model of spatial flexible beam element was proposed, and the dynamic equations of elements and branches of the parallel manipulator were derived. Secondly, according to the kinematic coupling relationship between the moving platform and flexible links, the kinematic constraints of the flexible parallel manipulator were proposed. Thirdly, using the kinematic constraint equations and dynamic model of the moving platform, the overall system dynamic equations of the parallel manipulator were obtained by assembling the dynamic equations of branches. FtLrthermore, a few commonly used effective solutions of second-order differential equation system with variable coefficients were discussed. Newmark numerical method was used to solve the dynamic equations of the flexible parallel manipulator. Finally, the dynamic responses of the moving platform and driving torques of the 3-RRS parallel mechanism with flexible links were analyzed through numerical simulation. The results provide important information for analysis of dynamic performance, dynamics optimization design, dynamic simulation and control of the 3-RRS flexible parallel manipulator.
基金Project(50375139) supported by the National Natural Science Foundation of ChinaProject(NCET-04-0545) supported by the New Century Excellent Talent Plan of the Ministry of Education of China
文摘The synchronous tracking control problem of a hydraulic parallel manipulator with six degrees of freedom (DOF) is complicated since the inclusion of hydraulic elements increases the order of the system.To solve this problem,cascade control method with an inner/outer-loop control structure is used,which masks the hydraulic dynamics with the inner-loop so that the designed controller takes into account of both the mechanical dynamics and the hydraulic dynamics of the manipulator.Furthermore,a cross-coupling control approach is introduced to the synchronous tracking control of the manipulator.The position synchronization error is developed by considering motion synchronization between each actuator joint and its adjacent ones based on the synchronous goal.Then,with the feedback of both position error and synchronization error,the tracking is proven to guarantee that both the position errors and synchronization errors asymptotically converge to zero.Moreover,the effectiveness of the proposed approach is verified by the experimental results performed with a 6-DOF hydraulic parallel manipulator.
基金Project(2014QNB18) supported by the Fundamental Research Funds for the Central Universities of ChinaProject(2014CBO46300) supported by the National Basic Research Program of China
文摘Kinematics and dynamics analyses were performed for a spatial 3-revolute joint-revolute joint-clylindric pair(3-RRC) parallel manipulator.This 3-RRC parallel manipulator is composed of a moving platform,a base platform,and three revolute joint-revolute joint-column pair chains which connect the moving platform and the base platform.Firstly,kinematics analysis for 3-RRC parallel manipulator was conducted.Next,on the basis of Lagrange formula,a simply-structured dynamic model of 3-RRC parallel manipulator was derived.Finally,through a calculation example,the variation of motorial parameters of this 3-RRC parallel manipulator,equivalent moment of inertia,driving force/torque and energy consumption was discussed.The research findings have important significance for research and engineering projects such as analyzing dynamic features,mechanism optimization design and control of 3-RRC parallel manipulator.
基金supported by the National Natural Science Foundation of China [grant number 11472137]the Fundamental Research Funds for the Central Universities [grant numbers 309181A8801,30919011204]。
文摘In this study,a modeling method for investigating the dynamic characteristics of a hydraulically driven shell manipulator with revolute clearance joints is presented.This model accounts for the effect of the clearance,the flexibility of the rotating beam,and the coupled dynamic characteristics of the hydraulic cylinder.A modified contact force model was developed to simulate the physical properties of realistic revolute joints with small clearances,heavy loads,and variable contact stiffnesses and damping coefficients with variations of the indentations.Considering the strong coupling relationship between the hydraulic cylinder and the flexible beam,a system equation of motion combining the state variables of the hydraulic cylinder and mechanical system was established.The complex nonlinear friction force of the hydraulic cylinder motion was constructed using a modified Lu Gre model,and the parameters of the friction model were identified using intelligent identification algorithms.Moreover,a test system for the shell manipulator was established to achieve experimental validation.Finally,the effects of the clearance size and the stiffness of the cylinder support on the dynamic response were investigated.
基金Project(2009AA04Z216) supported by the National High-Tech Research and Development Program (863 Program) of ChinaProject(2009ZX04013-011) supported by the National Science and Technology Major Project of ChinaProject supported by the HIT Oversea Talents Introduction Program,China
文摘A geometrical parameters optimization and reducers selection method was proposed for robotic manipulators design. The Lagrangian approach was employed in deriving the dynamic model of a two-DOF manipulator. The flexibility of links and joints was taken into account in the mechanical structure dimensions optimization and reducers selection, in which Timoshenko model was used to discretize the hollow links. Two criteria, i.e. maximization of fundamental frequency and minimization of self-mass/load ratio, were utilized to optimize the manipulators. The NSGA-II (fast elitist nondominated sorting genetic algorithms) was employed to solve the multi-objective optimization problem. How the joints flexibility affects the manipulators design was analyzed and shown in the numerical analysis example. The results indicate that simultaneous consideration of the joints and the links flexibility is very necessary for manipulators optimal design. Finally, several optimal combinations were provided. The effectiveness of the optimization method was proved by comparing with ADAMS simulation results. The self-mass/load ratio error of the two methods is within 10%. The maximum error of the natural frequency by the two methods is 23.74%. The method proposed in this work provides a fast and effective pathway for manipulator design and reducers selection.
基金the National Natural Science Foundation of China, ChinaGrant ID: 11472137。
文摘This paper focuses on the dynamic tracking control of ammunition manipulator system. A standard state space model for the ammunition manipulator electro-hydraulic system(AMEHS) with inherent nonlinearities and uncertainties considered was established. To simultaneously suppress the violation of tracking error constraints and the complexity of differential explosion, a barrier Lyapunov functionsbased dynamic surface control(BLF-DSC) method was proposed for the position tracking control of the ammunition manipulator. Theoretical analysis prove the stability of the closed-loop overall system and the tracking error converges to a prescribed neighborhood asymptotically. The effectiveness and dynamic tracking performance of the proposed control strategy is validated via simulation and experimental results.
基金Project(2007AA01Z224) supported by National High-Tech Research and Development Program of China
文摘To deploy sensor nodes over the area of interest,a scheme,named node scattering manipulation,was proposed.It adopted the following method:during node scattering,the initial states of every node,including the velocity and direction,were manipulated so that it would land in a region with a certain probability;every sensor was relocated in order to improve the coverage and connectivity.Simultaneously,to easily analyze the process of scattering sensors,a trajectory model was also proposed.Integrating node scattering manipulation with trajectory model,the node deployment in wireless sensor network was thoroughly renovated,that is,this scheme can scatter sensors.In practice,the scheme was operable compared with the previous achievements.The simulation results demonstrate the superiority and feasibility of the scheme,and also show that the energy consumption for sensors relocation is reduced.
基金Project(61374051,61603387)supported by the National Natural Science Foundation of ChinaProjects(20150520112JH,20160414033GH)supported by the Scientific and Technological Development Plan in Jilin Province of ChinaProject(20150102)supported by Opening Funding of State Key Laboratory of Management and Control for Complex Systems,China
文摘A decentralized adaptive neural network sliding mode position/force control scheme is proposed for constrained reconfigurable manipulators. Different from the decentralized control strategy in multi-manipulator cooperation, the proposed decentralized position/force control scheme can be applied to series constrained reconfigurable manipulators. By multiplying each row of Jacobian matrix in the dynamics by contact force vector, the converted joint torque is obtained. Furthermore, using desired information of other joints instead of their actual values, the dynamics can be represented as a set of interconnected subsystems by model decomposition technique. An adaptive neural network controller is introduced to approximate the unknown dynamics of subsystem. The interconnection and the whole error term are removed by employing an adaptive sliding mode term. And then, the Lyapunov stability theory guarantees the stability of the closed-loop system. Finally, two reconfigurable manipulators with different configurations are employed to show the effectiveness of the proposed decentralized position/force control scheme.
基金Project(51004085)supported by the National Natural Science Foundation of China
文摘For the position tracking control of hydraulic manipulators,a novel method of time delay control(TDC) with continuous nonsingular terminal sliding mode(CNTSM) was proposed in this work.Complex dynamics of the hydraulic manipulator is approximately canceled by time delay estimation(TDE),which means the proposed method is model-free and no prior knowledge of the dynamics is required.Moreover,the CNTSM term with a fast-TSM-type reaching law ensures fast convergence and high-precision tracking control performance under heavy lumped uncertainties.Despite its considerable robustness against lumped uncertainties,the proposed control scheme is continuous and chattering-free and no pressure sensors are required in practical applications.Theoretical analysis and experimental results show that faster and higher-precision position tracking performance is achieved compared with the traditional CNTSM-based TDC method using boundary layers.
文摘Because of its ease of implementation,a linear PID controller is generally used to control robotic manipulators.Linear controllers cannot effectively cope with uncertainties and variations in the parameters;therefore,nonlinear controllers with robust performance which can cope with these are recommended.The sliding mode control(SMC)is a robust state feedback control method for nonlinear systems that,in addition having a simple design,efficiently overcomes uncertainties and disturbances in the system.It also has a very fast transient response that is desirable when controlling robotic manipulators.The most critical drawback to SMC is chattering in the control input signal.To solve this problem,in this study,SMC is used with a boundary layer(SMCBL)to eliminate the chattering and improve the performance of the system.The proposed SMCBL was compared with inverse dynamic control(IDC),a conventional nonlinear control method.The kinematic and dynamic equations of the IRB-120 robot manipulator were initially extracted completely and accurately,and then the control of the robot manipulator using SMC was evaluated.For validation,the proposed control method was implemented on a 6-DOF IRB-120 robot manipulator in the presence of uncertainties.The results were simulated,tested,and compared in the MATLAB/Simulink environment.To further validate our work,the results were tested and confirmed experimentally on an actual IRB-120 robot manipulator.
文摘Trial mountain climbing algorithm to solve the inverse kinematics problem of redundant manipulator is introduced, and a method of describing a numeral with a special numeration system is given to define the changed step of the trail mountain climbing algorithm. The results show that a likelihood solution can be found quickly in the infinite groups of likelihood solutions within the limited search times, and need not calculate the anti trigonometric function and the inverse matrix. In addition, this algorithm has many good qualities such as concise algorithm, tiny computation, fast convergence velocity, good stability and extensive adaptability.
基金Projects(50175295,50675151) supported by the National Natural Science Foundation of ChinaProject(11JCZDJC22700) supported by Tianjin Science and Technology Program,ChinaProject(2007AA042001) supported by the National High Technology Research and Development Program of China
文摘A novel high-speed parallel kinematic machine (PKM) named Delta-S parallel manipulator is proposed, which consists of a fixed base connected to a moving platform through three limbs with identical topology. Each limb is composed of one driving ann and one follower arm, herein, the latter includes two strings and one middle rod, all located in a same plane. Compared with similar manipulators with uniform parameters, the novel and unique topology as well as the addition of two strings of Delta-S manipulator can remove the clearance of the spherical joints, reduce the inertial load of components further, improve the positioning accuracy and dynamic performance, and so on. In order to formulate the kineto-static model of Delta-S manipulator, the kineto-static analyses and models of the driving arm, the generalized follower and the moving platform can be carried out by the D'ALEMBERT principle. For the sake of obtaining the force analytic results of strings, the deformation compatibility condition of strings and the middle rod are determined. Furthermore, in virtue of the assumption of small deformation and the linear superposition principle, the minimal pre-tightening force of the strings is calculated. The main results include that the loads of the strings and the middle rod must be larger than "zero" and the pre-tightening force over the workspace must be larger than the minimal pre-tightening force at any time within the workspace, which lay the foundation for the dynamic analysis and the prototype manufacture of the Delta-S manipulator.
文摘A mathematical model was developed combining the dynamics of an Euler-Bernoulli beam, described by the assumed-mode method and hydraulic circuit dynamics. Only one matrix, termed drive Jacobian, was needed in the modeling of interaction between hydraulic circuit and flexible manipulator mechanism. Furthermore, a new robust controller based on mentioned above dynamic model was also considered to regulate both flexural vibrations and rigid body motion. The proposed controller combined sliding mode and backstepping techniques to deal with the nonlinear system with uncertainties. The sliding mode control was used to achieve an asymptotic joint angle and vibration regulation by providing a virtual force while the backstepping technique was used to regulate the spool position of a hydraulic valve to provide the required control force. Simulation results are presented to show the stabilizing effect and robustness of this control strategy.