A long-standing mystery in the study of Field-Aligned Currents(FACs) has been that: how the currents are generated and why they appear to be much stronger at high altitudes than in the ionosphere. Here we present two ...A long-standing mystery in the study of Field-Aligned Currents(FACs) has been that: how the currents are generated and why they appear to be much stronger at high altitudes than in the ionosphere. Here we present two events of magnetotail FACs observed by the Magnetospheric Multiscale Spacecraft(MMS) on 1 st July and 14 th July 2016, to show how the Substorm Current Wedges(SCW) were formed. The results show that particles were transferred heading towards the Earth during the expansion phase of substorms.The azimuthal flow formed clockwise(counter-clockwise) vortex-like motion, and then generated downward(upward) FACs on the tailward/poleward side of the distorted field with opposite vorticity on their Earthward/equatorward side. We also analyzed the Region 1 FACs observed by the Earth Explorer Swarm spacecraft on 1 st July 2016 and found that they were associated with FACs observed by MMS, although differing by a factor of 10. This difference suggests that either there was the closure of the currents at altitudes above 500 km or the currents were not strictly parallel to B and closed at longitudes away from where they were generated.展开更多
A future Chinese mission is introduced to study the coupling between magnetosphere,ionosphere and thermosphere,i.e.the Magnetosphere-Ionosphere-Thermosphere Coupling Small Satellite Constellation(MIT).The scientific o...A future Chinese mission is introduced to study the coupling between magnetosphere,ionosphere and thermosphere,i.e.the Magnetosphere-Ionosphere-Thermosphere Coupling Small Satellite Constellation(MIT).The scientific objective of the mission is to focus on the outflow ions from the ionosphere to the magnetosphere.The constellation is planning to be composed of four small satellites;each small satellite has its own orbit and crosses the polar region at nearly the same time but at different altitude.The payloads onboard include particle detectors,electromagnetic payloads,auroral imagers and neutral atom imagers.With these payloads,the mission will be able to investigate acceleration mechanism of the upflow ions at different altitudes.Currently the orbits have been determined and prototypes of some have also been completed.Competition for next phase selection is scheduled in late 2015.展开更多
In the past two years,many progresses were made in magnetospheric physics by the data of OMNI,SuperMAG networks,Double Star Program,Cluster,THEMIS,RBSP,DMSP,DEMETER,NOAA,Van Allen Probes,GOES,Geotail,Swarm,MMS,BeiDa,F...In the past two years,many progresses were made in magnetospheric physics by the data of OMNI,SuperMAG networks,Double Star Program,Cluster,THEMIS,RBSP,DMSP,DEMETER,NOAA,Van Allen Probes,GOES,Geotail,Swarm,MMS,BeiDa,Fengyun,ARTEMIS,MESSENGER,Juno,Chinese Mars ROVER,MAVEN,Tianwen-1,Venus Express,Lunar Prospector e.g.,or by computer simulations.This paper briefly reviews these works based on 356 papers published from January 2020 to December 2021.The subjects covered various sub-branches of Magnetospheric Physics,including solar wind-magnetosphere-ionosphere interaction,inner magnetosphere,outer magnetosphere,magnetic reconnection,planetary magnetosphere.展开更多
Their brief report presents the advances of the magnetospheric physics researches in China during the period of 2004-2006. During the past two years, China-ESA cooperation DSP (Double Star Program) satellites were suc...Their brief report presents the advances of the magnetospheric physics researches in China during the period of 2004-2006. During the past two years, China-ESA cooperation DSP (Double Star Program) satellites were successively launched. In addition, China also participated in the scientific research of ESA's Cluster mission. The DSP and Cluster missions provide Chinese space physicists high quality data to study multiscale physical process in the magnetosphere. The work made based on the data of DSP is presented in the paper of "Progress of Double Star Program" of this issue.展开更多
This is a concise review of physics of the substorm in the magnetotail.It consists of two parts. The first part summarizes historical developments in the early days of the space age(1960-1975)when the basic concepts s...This is a concise review of physics of the substorm in the magnetotail.It consists of two parts. The first part summarizes historical developments in the early days of the space age(1960-1975)when the basic concepts such as magnetotail and reconnection were established and the leading model of the substorm was introduced.The second part is an overview of the research conducted in recent years(1995-2010)when very significant advances have been achieved in understanding the substorm physics by virtue of several major satellites missions that addressed the magnetotail physics intensively.展开更多
In this paper is given short description of the magnetogram inversion technique,MIT2,and of methods of calculation of some parameters of space weather.Are given also examples of new results,obtained using the MIT2 and...In this paper is given short description of the magnetogram inversion technique,MIT2,and of methods of calculation of some parameters of space weather.Are given also examples of new results,obtained using the MIT2 and solar wind data.展开更多
The Double Star Programme (DSP) is the first joint space mission between China and ESA. The mission, which is made of two spacecraft, is designed to investigate the magnetospheric global processes and their response t...The Double Star Programme (DSP) is the first joint space mission between China and ESA. The mission, which is made of two spacecraft, is designed to investigate the magnetospheric global processes and their response to the interplanetary disturbances in conjunction with the Cluster mission. The first spacecraft, TC-1 (Tan Ce means "Explorer"), was launched on 30 December 2003, and the second one, TC-2, on 25 July 2004 on board two Chinese Long March 2C. Due to the importance of and success of DSP, both CNSA and ESA approved the extension of DSP. This paper presents DSP mission and some important scientific results made based on the data of DSP.展开更多
The Chinese Meridian Project(CMP)is a major national science and technology infrastructure invested and constructed by the Chinese government.The project builds space environment observation stations,focusing on the m...The Chinese Meridian Project(CMP)is a major national science and technology infrastructure invested and constructed by the Chinese government.The project builds space environment observation stations,focusing on the monitoring of the space environment over China,so as to provide a monitoring basis for clarifying the regional characteristics of the space environment over China and its relationship with global change,and making important innovative scientific achievements.The first phase of the CMP passed the national acceptance in 2012.It has been running for nearly ten years and has accumulated more than 8 TB monitoring data.These data are all available to all data users through the data center of the project.From 2020 to 2021,users of CMP data have completed a series of original works,which have solved current scientific problems in the field of space physics research.On the other hand,they also make us look forward to the completion of the second phase of CMP and its application benefits in national major strategic needs and cutting-edge scientific research.展开更多
The Chinese Meridian Project(CMP)is a major national science and technology infrastructure constructed in two steps.The first phase of the CMP has been operating for more than a solar cycle.From 2022 to 2023,utilizing...The Chinese Meridian Project(CMP)is a major national science and technology infrastructure constructed in two steps.The first phase of the CMP has been operating for more than a solar cycle.From 2022 to 2023,utilizing the monitoring data collected by the CMP,scientists made major breakthroughs in fields of ionosphere,middle and upper atmosphere,and coupling between layers.The construction of the second phase of the CMP is nearly finished,and the project is expected to operate as a whole in 2025 after national acceptance of the second phase.The whole project was built in an architecture of so-called“One Chain,Three Networks and Four Focuses”.It is promising to make a three-dimensional observation of the whole solar-terrestrial space.The science community is looking forward to the great contribution of the CMP to space weather and space physics research.展开更多
Geosynchronous orbit is located in the ring current region,where the energetic particle emission environment challenges the ion deflection design limit of the Energetic Neutral Atom(ENA)imager.Therefore,there is no me...Geosynchronous orbit is located in the ring current region,where the energetic particle emission environment challenges the ion deflection design limit of the Energetic Neutral Atom(ENA)imager.Therefore,there is no measurement record of ENA imaging in this area before.On the basis of possessing the patent of high-energy ion deflection technology,ENA imaging under different Kp index in geosynchronous orbit is simulated.The simulation images show the characteristics of low-altitude ENA emission source and the rough sketch of magnetosphere.Due to the north-south conjugation observation of geosynchronous orbit,the simulated ENA images at different positions all have north-south symmetry.Aiming at the unsolved problems,such as the input source of ring current energetic ions during geomagnetic activities and its evolution process,we analyzed the possible results of ENA imaging combined with in-situ particle measurements in the same satellite,as well as the subversion effect of any north-south asymmetry of ENA map on the inversion model.展开更多
Magnetospheric physics has been one of the most active areas in Chinese space research in past two years. The major project "Energy Transport Processes in the Solar-Terrestrial System" (1993-1997) sponsored ...Magnetospheric physics has been one of the most active areas in Chinese space research in past two years. The major project "Energy Transport Processes in the Solar-Terrestrial System" (1993-1997) sponsored by the National Natural Science Foundation in China (NSFC) has been successfully completed. Prestudies relevant to the key scientific engineering program "Meridian Chain at One Hundred Twenty Degree East Multi-Station and Multi-Instrument Observatory System" have started. A new key project "Study of Auroral Magnetospheric and Ionospheric Physics" (1997-1999) sponsored by the NSFC has begun. The Space Active Experiment Program has been carrying on further.Collaborations between Chinese and international magnetospheric physicists have proceeded forward. More than 40 papers covering a variety of subjects in the magnetospheric physics were published in Chinese and international academic journals. Most of these works were supported by the NSFC. This report provides a brief summary of aforementioned advances made in China in the past two years.展开更多
This brief report presents the latest advances of the magnetospheric physics researches in China during the period of 2002-2004. The progress of the magnetospheric space mission DSP is given in another dedicated paper...This brief report presents the latest advances of the magnetospheric physics researches in China during the period of 2002-2004. The progress of the magnetospheric space mission DSP is given in another dedicated paper of this issue.展开更多
This brief report presents the latest advances of the magnetospheric physics researches in China during the period of 2000-2002, made independently by Chinese space physicists and through international cooperation. Th...This brief report presents the latest advances of the magnetospheric physics researches in China during the period of 2000-2002, made independently by Chinese space physicists and through international cooperation. The related areas cover almost every aspect of magnetospheric physics.展开更多
In the past two years, many progresses have been made in magnetospheric physics by using the data of Double Star Program, Cluster, THEMIS and RBSP missions, or by computer simulations. This paper briefly reviews these...In the past two years, many progresses have been made in magnetospheric physics by using the data of Double Star Program, Cluster, THEMIS and RBSP missions, or by computer simulations. This paper briefly reviews these works based on papers selected from the 126 publications from March 2012 to March 2014. The subjects cover various sub-branches of magnetospheric physics,including geomagnetic storm, magnetospheric substorm and magnetic reconnection.展开更多
In the past two years,many progresses are made in magnetospheric physics by using either the data of Double Star Program,Cluster and THEMIS missions,or by computer simulations. This paper briefly reviews these works b...In the past two years,many progresses are made in magnetospheric physics by using either the data of Double Star Program,Cluster and THEMIS missions,or by computer simulations. This paper briefly reviews these works based on papers selected from the 80 publications from April 2010 to April 2011.The subjects covered various sub-branches of magnetospheric physics,including geomagnetic storm,magnetospheric substorm,etc.展开更多
In the past two years,many progresses were made in Magnetospheric Physics by using the data of SuperMAG,Double Star Program,Cluster,THEMIS,RBSP,DMSP,DEMETER,NOAA,Van Allen probe,Swarm,MMS,ARTEMIS,MESSENGER,Fengyun,Bei...In the past two years,many progresses were made in Magnetospheric Physics by using the data of SuperMAG,Double Star Program,Cluster,THEMIS,RBSP,DMSP,DEMETER,NOAA,Van Allen probe,Swarm,MMS,ARTEMIS,MESSENGER,Fengyun,BeiDa etc.,or by computer simulations.This paper briefly reviews these works based on papers selected from the 248 publications from January 2018 to December 2019.The subjects covered various sub-branches of Magnetospheric Physics,including geomagnetic storm,magnetospheric substorm,magnetic reconnection,solar wind-magnetosphere-ionosphere interaction,radiation belt,ring current,whistler waves,plasmasphere,outer magnetosphere,magnetotail,planetary magnetosphere,and technique.展开更多
基金Supported by National Natural Science Foundation of China(41874190,41231066)
文摘A long-standing mystery in the study of Field-Aligned Currents(FACs) has been that: how the currents are generated and why they appear to be much stronger at high altitudes than in the ionosphere. Here we present two events of magnetotail FACs observed by the Magnetospheric Multiscale Spacecraft(MMS) on 1 st July and 14 th July 2016, to show how the Substorm Current Wedges(SCW) were formed. The results show that particles were transferred heading towards the Earth during the expansion phase of substorms.The azimuthal flow formed clockwise(counter-clockwise) vortex-like motion, and then generated downward(upward) FACs on the tailward/poleward side of the distorted field with opposite vorticity on their Earthward/equatorward side. We also analyzed the Region 1 FACs observed by the Earth Explorer Swarm spacecraft on 1 st July 2016 and found that they were associated with FACs observed by MMS, although differing by a factor of 10. This difference suggests that either there was the closure of the currents at altitudes above 500 km or the currents were not strictly parallel to B and closed at longitudes away from where they were generated.
基金Supported by the Strategic Priority Research Program on Space Science(XDA04060201)of Chinese Academy of Sciencesthe Chinese Academy of Sciences"Hundred Talented Program"(Y32135A47S)+2 种基金the Chinese National Science Foundation(411774149)the Specialized Research Fund for State Key laboratory of Chinathe Chinese Academy of Sciences Visiting Fellowship for Researchers from Developing Countries
文摘A future Chinese mission is introduced to study the coupling between magnetosphere,ionosphere and thermosphere,i.e.the Magnetosphere-Ionosphere-Thermosphere Coupling Small Satellite Constellation(MIT).The scientific objective of the mission is to focus on the outflow ions from the ionosphere to the magnetosphere.The constellation is planning to be composed of four small satellites;each small satellite has its own orbit and crosses the polar region at nearly the same time but at different altitude.The payloads onboard include particle detectors,electromagnetic payloads,auroral imagers and neutral atom imagers.With these payloads,the mission will be able to investigate acceleration mechanism of the upflow ions at different altitudes.Currently the orbits have been determined and prototypes of some have also been completed.Competition for next phase selection is scheduled in late 2015.
文摘In the past two years,many progresses were made in magnetospheric physics by the data of OMNI,SuperMAG networks,Double Star Program,Cluster,THEMIS,RBSP,DMSP,DEMETER,NOAA,Van Allen Probes,GOES,Geotail,Swarm,MMS,BeiDa,Fengyun,ARTEMIS,MESSENGER,Juno,Chinese Mars ROVER,MAVEN,Tianwen-1,Venus Express,Lunar Prospector e.g.,or by computer simulations.This paper briefly reviews these works based on 356 papers published from January 2020 to December 2021.The subjects covered various sub-branches of Magnetospheric Physics,including solar wind-magnetosphere-ionosphere interaction,inner magnetosphere,outer magnetosphere,magnetic reconnection,planetary magnetosphere.
基金Supported by the National Natural Science Foundation of China (40523006, 40390153, 40474062), International Collaboration Research Team Program and Bairen Plan of Chinese Academy of Sciences
文摘Their brief report presents the advances of the magnetospheric physics researches in China during the period of 2004-2006. During the past two years, China-ESA cooperation DSP (Double Star Program) satellites were successively launched. In addition, China also participated in the scientific research of ESA's Cluster mission. The DSP and Cluster missions provide Chinese space physicists high quality data to study multiscale physical process in the magnetosphere. The work made based on the data of DSP is presented in the paper of "Progress of Double Star Program" of this issue.
文摘This is a concise review of physics of the substorm in the magnetotail.It consists of two parts. The first part summarizes historical developments in the early days of the space age(1960-1975)when the basic concepts such as magnetotail and reconnection were established and the leading model of the substorm was introduced.The second part is an overview of the research conducted in recent years(1995-2010)when very significant advances have been achieved in understanding the substorm physics by virtue of several major satellites missions that addressed the magnetotail physics intensively.
基金Supported by RFBR(No.02-05-64519)RFBR-DFG(No.02-05-04002)+1 种基金INTAS(No.01-0142)the China-Russia Joint Research Center on Space WeatherChinese Academy of Sciences
文摘In this paper is given short description of the magnetogram inversion technique,MIT2,and of methods of calculation of some parameters of space weather.Are given also examples of new results,obtained using the MIT2 and solar wind data.
基金Supported by the National Natural Science Foundation of China (40390151, 40390153 and 40523006) and International Collaboration Research Team Program and Bairen Plan of the Chinese Academy of Sciences
文摘The Double Star Programme (DSP) is the first joint space mission between China and ESA. The mission, which is made of two spacecraft, is designed to investigate the magnetospheric global processes and their response to the interplanetary disturbances in conjunction with the Cluster mission. The first spacecraft, TC-1 (Tan Ce means "Explorer"), was launched on 30 December 2003, and the second one, TC-2, on 25 July 2004 on board two Chinese Long March 2C. Due to the importance of and success of DSP, both CNSA and ESA approved the extension of DSP. This paper presents DSP mission and some important scientific results made based on the data of DSP.
文摘The Chinese Meridian Project(CMP)is a major national science and technology infrastructure invested and constructed by the Chinese government.The project builds space environment observation stations,focusing on the monitoring of the space environment over China,so as to provide a monitoring basis for clarifying the regional characteristics of the space environment over China and its relationship with global change,and making important innovative scientific achievements.The first phase of the CMP passed the national acceptance in 2012.It has been running for nearly ten years and has accumulated more than 8 TB monitoring data.These data are all available to all data users through the data center of the project.From 2020 to 2021,users of CMP data have completed a series of original works,which have solved current scientific problems in the field of space physics research.On the other hand,they also make us look forward to the completion of the second phase of CMP and its application benefits in national major strategic needs and cutting-edge scientific research.
基金Supported by National Major Science and Technology Infrastructure Construction Project:the Chinese Meridian Project(2017-000052-73-01-002390)。
文摘The Chinese Meridian Project(CMP)is a major national science and technology infrastructure constructed in two steps.The first phase of the CMP has been operating for more than a solar cycle.From 2022 to 2023,utilizing the monitoring data collected by the CMP,scientists made major breakthroughs in fields of ionosphere,middle and upper atmosphere,and coupling between layers.The construction of the second phase of the CMP is nearly finished,and the project is expected to operate as a whole in 2025 after national acceptance of the second phase.The whole project was built in an architecture of so-called“One Chain,Three Networks and Four Focuses”.It is promising to make a three-dimensional observation of the whole solar-terrestrial space.The science community is looking forward to the great contribution of the CMP to space weather and space physics research.
基金Supported by National Key R&D Program of China(2020YFE0202100)National Mission/Other National Mission:Research on Key Technologies of the Outer Heliospheric Space Exploration System(Y91 Z100102)National Mission/National Major Science and Technology Project:CE-7 Relay Satellite Display Neutral Atom Imager(E16504B31S)。
文摘Geosynchronous orbit is located in the ring current region,where the energetic particle emission environment challenges the ion deflection design limit of the Energetic Neutral Atom(ENA)imager.Therefore,there is no measurement record of ENA imaging in this area before.On the basis of possessing the patent of high-energy ion deflection technology,ENA imaging under different Kp index in geosynchronous orbit is simulated.The simulation images show the characteristics of low-altitude ENA emission source and the rough sketch of magnetosphere.Due to the north-south conjugation observation of geosynchronous orbit,the simulated ENA images at different positions all have north-south symmetry.Aiming at the unsolved problems,such as the input source of ring current energetic ions during geomagnetic activities and its evolution process,we analyzed the possible results of ENA imaging combined with in-situ particle measurements in the same satellite,as well as the subversion effect of any north-south asymmetry of ENA map on the inversion model.
文摘Magnetospheric physics has been one of the most active areas in Chinese space research in past two years. The major project "Energy Transport Processes in the Solar-Terrestrial System" (1993-1997) sponsored by the National Natural Science Foundation in China (NSFC) has been successfully completed. Prestudies relevant to the key scientific engineering program "Meridian Chain at One Hundred Twenty Degree East Multi-Station and Multi-Instrument Observatory System" have started. A new key project "Study of Auroral Magnetospheric and Ionospheric Physics" (1997-1999) sponsored by the NSFC has begun. The Space Active Experiment Program has been carrying on further.Collaborations between Chinese and international magnetospheric physicists have proceeded forward. More than 40 papers covering a variety of subjects in the magnetospheric physics were published in Chinese and international academic journals. Most of these works were supported by the NSFC. This report provides a brief summary of aforementioned advances made in China in the past two years.
文摘This brief report presents the latest advances of the magnetospheric physics researches in China during the period of 2002-2004. The progress of the magnetospheric space mission DSP is given in another dedicated paper of this issue.
基金Supported by the National Natural Science Foundation of China through grant No.40025413
文摘This brief report presents the latest advances of the magnetospheric physics researches in China during the period of 2000-2002, made independently by Chinese space physicists and through international cooperation. The related areas cover almost every aspect of magnetospheric physics.
文摘In the past two years, many progresses have been made in magnetospheric physics by using the data of Double Star Program, Cluster, THEMIS and RBSP missions, or by computer simulations. This paper briefly reviews these works based on papers selected from the 126 publications from March 2012 to March 2014. The subjects cover various sub-branches of magnetospheric physics,including geomagnetic storm, magnetospheric substorm and magnetic reconnection.
文摘In the past two years,many progresses are made in magnetospheric physics by using either the data of Double Star Program,Cluster and THEMIS missions,or by computer simulations. This paper briefly reviews these works based on papers selected from the 80 publications from April 2010 to April 2011.The subjects covered various sub-branches of magnetospheric physics,including geomagnetic storm,magnetospheric substorm,etc.
基金Supported by National Natural Science Foundation of China Grants(41821003,41941001)。
文摘In the past two years,many progresses were made in Magnetospheric Physics by using the data of SuperMAG,Double Star Program,Cluster,THEMIS,RBSP,DMSP,DEMETER,NOAA,Van Allen probe,Swarm,MMS,ARTEMIS,MESSENGER,Fengyun,BeiDa etc.,or by computer simulations.This paper briefly reviews these works based on papers selected from the 248 publications from January 2018 to December 2019.The subjects covered various sub-branches of Magnetospheric Physics,including geomagnetic storm,magnetospheric substorm,magnetic reconnection,solar wind-magnetosphere-ionosphere interaction,radiation belt,ring current,whistler waves,plasmasphere,outer magnetosphere,magnetotail,planetary magnetosphere,and technique.