A high-sensitivity magnetic sensing system based on giant magneto-impedance(GMI)effect is designed and fabricated.The system comprises a GMI sensor equipped with a gradient probe and an signal acquisition and processi...A high-sensitivity magnetic sensing system based on giant magneto-impedance(GMI)effect is designed and fabricated.The system comprises a GMI sensor equipped with a gradient probe and an signal acquisition and processing module.A segmented superposition algorithm is used to increase target signal and reduce the random noise.The results show that under unshielded,room temperature conditions,the system achieves successful detection of weak magnetic fields down to 2 pT with a notable sensitivity of 1.84×10^(8)V/T(G=1000).By applying 17 overlays,the segmented superposition algorithm increases the power proportion of the target signal at 31 Hz from6.89%to 45.91%,surpassing the power proportion of the 2 Hz low-frequency interference signal.Simultaneously,it reduces the power proportion of the 20 Hz random noise.The segmented superposition process effectively cancels out certain random noise elements,leading to a reduction in their respective power proportions.This high-sensitivity magnetic sensing system features a simple structure,and is easy to operate,making it highly valuable for both practical applications and broader dissemination.展开更多
A novel reference-driven method for MR image reconstruction based on wavelet sparsity and nonlocal total variation(NLTV)is proposed.Utilizing the sparsity of the difference image between the target image and the mot...A novel reference-driven method for MR image reconstruction based on wavelet sparsity and nonlocal total variation(NLTV)is proposed.Utilizing the sparsity of the difference image between the target image and the motion-compensated reference image in wavelet transform domain,the proposed method does not need to estimate contrast changes and therefore increases computational efficiency.Additionally,NLTV regularization is applied to preserve image details and features without blocky effects.An efficient alternating iterative algorithm is used to estimate motion effects and reconstruct the difference image.Experimental results demonstrate that the proposed method can significantly reduce sampling rate or improve the quality of the reconstructed image alternatively.展开更多
The wearable sensors have recently attracted considerable attentions as communication interfaces through the information perception,decoding,and conveying process.However,it is still challenging to obtain a sensor tha...The wearable sensors have recently attracted considerable attentions as communication interfaces through the information perception,decoding,and conveying process.However,it is still challenging to obtain a sensor that can convert detectable signals into multiple outputs for convenient,e cient,cryptic,and high-capacity information transmission.Herein,we present a capacitive sensor of magnetic field based on a tilted flexible micromagnet array(t-FMA)as the proposed interaction interface.With the bidirectional bending capability of t-FMA actuated by magnetic torque,the sensor can recognize both the magnitude and orientation of magnetic field in real time with non-overlapping capacitance signals.The optimized sensor exhibits the high sensitivity of over 1.3 T-1 and detection limit down to 1 mT with excellent durability.As a proof of concept,the sensor has been successfully demonstrated for convenient,e cient,and programmable interaction systems,e.g.,touchless Morse code and Braille communication.The distinguishable recognition of the magnetic field orientation and magnitude further enables the sensor unit as a high-capacity transmitter for cryptic information interaction(e.g.,encoded ID recognition)and multi-control instruction outputting.We believe that the proposed magnetic field sensor can open up a potential avenue for future applications including information communication,virtual reality device,and interactive robotics.展开更多
基金National Natural Science Foundation of China(No.51977214)。
文摘A high-sensitivity magnetic sensing system based on giant magneto-impedance(GMI)effect is designed and fabricated.The system comprises a GMI sensor equipped with a gradient probe and an signal acquisition and processing module.A segmented superposition algorithm is used to increase target signal and reduce the random noise.The results show that under unshielded,room temperature conditions,the system achieves successful detection of weak magnetic fields down to 2 pT with a notable sensitivity of 1.84×10^(8)V/T(G=1000).By applying 17 overlays,the segmented superposition algorithm increases the power proportion of the target signal at 31 Hz from6.89%to 45.91%,surpassing the power proportion of the 2 Hz low-frequency interference signal.Simultaneously,it reduces the power proportion of the 20 Hz random noise.The segmented superposition process effectively cancels out certain random noise elements,leading to a reduction in their respective power proportions.This high-sensitivity magnetic sensing system features a simple structure,and is easy to operate,making it highly valuable for both practical applications and broader dissemination.
基金Supported by the National Natural Science Foundation of China(61077022)
文摘A novel reference-driven method for MR image reconstruction based on wavelet sparsity and nonlocal total variation(NLTV)is proposed.Utilizing the sparsity of the difference image between the target image and the motion-compensated reference image in wavelet transform domain,the proposed method does not need to estimate contrast changes and therefore increases computational efficiency.Additionally,NLTV regularization is applied to preserve image details and features without blocky effects.An efficient alternating iterative algorithm is used to estimate motion effects and reconstruct the difference image.Experimental results demonstrate that the proposed method can significantly reduce sampling rate or improve the quality of the reconstructed image alternatively.
基金supported by The Science and Technology Development Fund,Macao SAR(File No.0037/2018/A1,0026/2020/AGJ)MultiYear Research Grant funded by University of Macao(File No.MYRG2017-00089-FST,MYRG2018-00063-IAPME)。
文摘The wearable sensors have recently attracted considerable attentions as communication interfaces through the information perception,decoding,and conveying process.However,it is still challenging to obtain a sensor that can convert detectable signals into multiple outputs for convenient,e cient,cryptic,and high-capacity information transmission.Herein,we present a capacitive sensor of magnetic field based on a tilted flexible micromagnet array(t-FMA)as the proposed interaction interface.With the bidirectional bending capability of t-FMA actuated by magnetic torque,the sensor can recognize both the magnitude and orientation of magnetic field in real time with non-overlapping capacitance signals.The optimized sensor exhibits the high sensitivity of over 1.3 T-1 and detection limit down to 1 mT with excellent durability.As a proof of concept,the sensor has been successfully demonstrated for convenient,e cient,and programmable interaction systems,e.g.,touchless Morse code and Braille communication.The distinguishable recognition of the magnetic field orientation and magnitude further enables the sensor unit as a high-capacity transmitter for cryptic information interaction(e.g.,encoded ID recognition)and multi-control instruction outputting.We believe that the proposed magnetic field sensor can open up a potential avenue for future applications including information communication,virtual reality device,and interactive robotics.