Tuning of the magnetic interaction plays the vital role in reducing the clustering of magnetic dopant in diluted magnetic semiconductors(DMS).Due to the not well understood magnetic mechanism and the interplay between...Tuning of the magnetic interaction plays the vital role in reducing the clustering of magnetic dopant in diluted magnetic semiconductors(DMS).Due to the not well understood magnetic mechanism and the interplay between different magnetic mechanisms,no efficient and universal tuning strategy is proposed at present.Here,the magnetic interactions and formation energies of isovalent-doped(Mn) and aliovalent(Cr)-doped LiZnAs are studied based on density functional theory(DFT).It is found that the dopant–dopant distance-dependent magnetic interaction is highly sensitive to the carrier concentration and carrier type and can only be explained by the interplay between two magnetic mechanisms,i.e.,superexchange and Zener’s p–d exchange model.Thus,the magnetic behavior and clustering of magnetic dopant can be tuned by the interplay between two magnetic mechanisms.The insensitivity of the tuning effect to U parameter suggests that our strategy could be universal to other DMS.展开更多
We study (Ga, Mn)As diluted magnetic semiconductors in terms of the Ruderman-Kittel-Kasuya-Yosida quantum spin model in Green's function approach. Random distributions of the magnetic atoms are treated by using an ...We study (Ga, Mn)As diluted magnetic semiconductors in terms of the Ruderman-Kittel-Kasuya-Yosida quantum spin model in Green's function approach. Random distributions of the magnetic atoms are treated by using an analytical average of magnetic configurations. Average magnetic moments and spin excitation spectra as functions of temperature can be obtained by solving self-consistent equations, and the Curie temperature TC is given explicitly. Tc is proportional to magnetic atomic concentration, and there exists a maximum for Tc as a function of carrier concentration. Applied to (Ga, Mn)As, the theoretical results are consistent with experiment and the experimental TC can be obtained with reasonable parameters. This modelling can also be applied to other diluted magnetic semiconductors.展开更多
The two-dimensional(2D)Janus monolayers are promising in spintronic device application due to their enhanced magnetic couplings and Curie temperatures.Van der Waals CrCl_(3) monolayer has been experimentally proved to...The two-dimensional(2D)Janus monolayers are promising in spintronic device application due to their enhanced magnetic couplings and Curie temperatures.Van der Waals CrCl_(3) monolayer has been experimentally proved to have an in-plane magnetic easy axis and a low Curie temperature of 17 K,which will limit its application in spintronic devices.In this work,we propose a new Janus monolayer Cr_(2)Cl_(3)S_(3) based on the first principles calculations.The phonon dispersion and elastic constants confirm that Janus monolayer Cr_(2)Cl_(3)S_(3) is dynamically and mechanically stable.Our Monte Carlo simulation results based on magnetic exchange constants reveal that Janus monolayer Cr_(2)Cl_(3)S_(3) is an intrinsic ferromagnetic semiconductor with TC of 180 K,which is much higher than that of CrCl_(3) due to the enhanced ferromagnetic coupling caused by S substitution.Moreover,the magnetic easy axis of Janus Cr_(2)Cl_(3)S_(3) can be tuned to the perpendicular direction with a large magnetic anisotropy energy(MAE)of 142eV/Cr.Furthermore,the effect of biaxial strain on the magnetic property of Janus monolayer Cr_(2)Cl_(3)S_(3) is evaluated.It is found that the Curie temperature is more robust under tensile strain.This work indicates that the Janus monolayer Cr_(2)Cl_(3)S_(3) presents increased Curie temperature and out-of-plane magnetic easy axis,suggesting greater application potential in 2D spintronic devices.展开更多
Diluted ferromagnetic semiconductors(DMSs) that combine the properties of semiconductors with ferromagnetism have potential application in spin-sensitive electronic(spintronic) devices. The search for DMS material...Diluted ferromagnetic semiconductors(DMSs) that combine the properties of semiconductors with ferromagnetism have potential application in spin-sensitive electronic(spintronic) devices. The search for DMS materials exploded after the observation of ferromagnetic ordering in Ⅲ-Ⅴ(Ga,Mn)As films. Recently, a series of DMS compounds isostructural to iron-based superconductors have been reported. Among them, the highest Curie temperature TCo f 230 K has been achieved in(Ba,K)(Zn,Mn)2As2. However, most DMSs, including(Ga,Mn)As, are p-type, i.e., the carriers that mediate the ferromagnetism are holes. For practical applications, DMSs with n-type carriers are also advantageous. Very recently,a new DMS Ba(Zn,Co)2As2 with n-type carriers has been synthesized. Here we summarize the recent progress on this research stream. We will show that the homogeneous ferromagnetism in these bulk form DMSs has been confirmed by microscopic techniques, i.e., nuclear magnetic resonance(NMR) and muon spin rotation(μSR).展开更多
By using first-principles electronic structure calculations, we have studied the magnetic interactions in a proposed BaZn2P2-based diluted magnetic semiconductor(DMS). For a typical compound Ba(Zn(0.944)Mn(0.05...By using first-principles electronic structure calculations, we have studied the magnetic interactions in a proposed BaZn2P2-based diluted magnetic semiconductor(DMS). For a typical compound Ba(Zn(0.944)Mn(0.056))2P2 with only spin doping, due to the superexchange interaction between Mn atoms and the lack of itinerant carriers, the short-range antiferromagnetic coupling dominates. Partially substituting K atoms for Ba atoms, which introduces itinerant hole carriers into the p orbitals of P atoms so as to link distant Mn moments with the spin-polarized hole carriers via the p–d hybridization between P and Mn atoms, is very crucial for the appearance of ferromagnetism in the compound. Furthermore, applying hydrostatic pressure first enhances and then decreases the ferromagnetic coupling in(Ba0.75 K0.25)(Zn(0.944)Mn(0.056))2P2 at a turning point around 15 GPa, which results from the combined effects of the pressure-induced variations of electron delocalization and p–d hybridization. Compared with the BaZn2 As2-based DMS, the substitution of P for As can modulate the magnetic coupling effectively. Both the results for BaZn2 P2-based and BaZn2As2-based DMSs demonstrate that the robust antiferromagnetic(AFM) coupling between the nearest Mn–Mn pairs bridged by anions is harmful to improving the performance of these Ⅱ–Ⅱ–Ⅴ based DMS materials.展开更多
This paper reports that the (Ga, Co)-codoped ZnO thin films have been grown by inductively coupled plasma enhanced physical vapour deposition. Room-temperature ferromagnetism is observed for the as-grown thin films....This paper reports that the (Ga, Co)-codoped ZnO thin films have been grown by inductively coupled plasma enhanced physical vapour deposition. Room-temperature ferromagnetism is observed for the as-grown thin films. The x-ray absorption fine structure characterization reveals that Co2+ and Ga3+ ions substitute for Zn2+ ions in the ZnO lattice and exclude the possibility of extrinsic ferromagnetism origin. The ferromagnetic (Ga, Co)-codoped ZnO thin films exhibit carrier concentration dependent anomalous Hall effect and positive magnetoresistance at room tempera- ture. The mechanism of anomalous Hall effect and magneto-transport in ferromagnetic ZnO-based diluted magnetic semiconductors is discussed.展开更多
A series of Mn-doped ZnO films have been prepared in different sputtering plasmas by using the inductively coupled plasma enhanced physical vapour deposition. The films show paramagnetic behaviour when they are deposi...A series of Mn-doped ZnO films have been prepared in different sputtering plasmas by using the inductively coupled plasma enhanced physical vapour deposition. The films show paramagnetic behaviour when they are deposited in an argon plasma. The Hall measurement indicates that ferromagnetism cannot be realized by increasing the electron concentration. However, the room-temperature ferromagnetism is obtained when the films are deposited in a mixed argon-nitrogen plasma. The first-principles calculations reveal that antiferromagnetic ordering is favoured in the case of the substitution of Mn^2+ for Zn^2+ without additional acceptor doping. The substitution of N for O (NO^-) is necessary to induce ferromagnetic couplings in the Zn-Mn-O system. The hybridization between N 2p and Mn 3d provides an empty orbit around the Fermi level. The hopping of Mn 3d electrons through the empty orbit can induce the ferromagnetic coupling. The ferromagnetism in the N-doped Zn-Mn-O system possibly originates from the charge transfer between Mn^2+ and Mn^3+ via NO^-, The key factor is the empty orbit provided by substituting N for O, rather than the conductivity type or the carrier concentration.展开更多
The layered semiconductor BaFZnAs with the tetragonal ZrCuSiAs-type structure has been successfully synthesized.Both the in-situ high-pressure synchrotron x-ray diffraction and the high-pressure Raman scattering measu...The layered semiconductor BaFZnAs with the tetragonal ZrCuSiAs-type structure has been successfully synthesized.Both the in-situ high-pressure synchrotron x-ray diffraction and the high-pressure Raman scattering measurements demonstrate that the structure of BaFZnAs is stable under pressure up to 17.5 GPa at room temperature. The resistivity and the magnetic susceptibility data show that BaFZnAs is a non-magnetic semiconductor. BaFZnAs is recommended as a candidate of the host material of diluted magnetic semiconductor.展开更多
We give a brief introduction to the oxide (ZnO, TiO2, In2O3, SnO2, etc.)-based magnetic semiconductors from fundamental material aspects through fascinating magnetic, transport, and optical properties, particularly ...We give a brief introduction to the oxide (ZnO, TiO2, In2O3, SnO2, etc.)-based magnetic semiconductors from fundamental material aspects through fascinating magnetic, transport, and optical properties, particularly at room temperature, to promising device applications. The origin of the observed ferromagnetism is also discussed, with a special focus on first-principles investigations of the exchange interactions between transition metal dopants in oxide-based magnetic semiconductors.展开更多
Amorphous MnxGe1-x:H ferromagnetic semiconductor films prepared in mixed Ar with 20% H2 by magnetron co- sputtering show global ferromagnetism with positive coercivity at low temperatures. With increasing temperature...Amorphous MnxGe1-x:H ferromagnetic semiconductor films prepared in mixed Ar with 20% H2 by magnetron co- sputtering show global ferromagnetism with positive coercivity at low temperatures. With increasing temperature, the coercivity of MnxGe1-x:H films first changes from positive to negative, and then back to positive again, which was not found in the corresponding MnxGe1-x and other ferromagnetic semiconductors before. For Mn0.4Ge0.6:H film, the inverted Hall loop is also observed at 30 K, which is consistent with the negative coercivity. The negative coercivity is explained by the antiferromagnetic exchange coupling between the H-rich ferromagnetic regions separated by the H-poor non-ferromagnetic spacers. Hydrogenation is a useful method to tune the magnetic properties of MnxGe1-x films for the application in spintronics.展开更多
Influence of spin–orbit coupling on spin-polarized electronic transport in magnetic semiconductor nanowires with nanosized sharp domain walls is investigated theoretically.It is shown that the Rashba spin–orbit coup...Influence of spin–orbit coupling on spin-polarized electronic transport in magnetic semiconductor nanowires with nanosized sharp domain walls is investigated theoretically.It is shown that the Rashba spin–orbit coupling can enhance significantly the spin-flip scattering of charge carriers from a nanosized sharp domain wall whose extension is much smaller than the carrier's Fermi wavelength.When there are more than one domain wall presented in a magnetic semiconductor nanowire,not only the spin-flip scattering of charge carriers from the domain walls but the quantum interference of charge carriers in the intermediate domain regions between neighboring domain walls may play important roles on spin-polarized electronic transport,and in such cases the influences of the Rashba spin–orbit coupling will depend sensitively both on the domain walls' width and the domain walls' separation.展开更多
We report the successful fabrication of a new 1111-type bulk magnetic semiconductor(La,Ba)(Zn,Mn)SbO through the solid solution of(La,Ba)and(Zn,Mn)in the parent compound LaZnSbO.The polycrystalline samples(La,Ba)(Zn,M...We report the successful fabrication of a new 1111-type bulk magnetic semiconductor(La,Ba)(Zn,Mn)SbO through the solid solution of(La,Ba)and(Zn,Mn)in the parent compound LaZnSbO.The polycrystalline samples(La,Ba)(Zn,Mn)SbO crystallize into ZrCuSiAs-type tetragonal structure,which has the same structure as iron-based superconductor LaFeAsO_(1-δ).The DC magnetization measurements indicate the existence of spin-glass ordering,and the coercive field is up to~11500 Oe(1 Oe=79.5775 A·m^(-1)).The AC magnetic susceptibility further determines that the samples evolve into a conventional spin-glass ordering state below the spin freezing temperature T_(f).In addition,the negative magnetoresistance(MR≡[ρ(H)-ρ(0)]/ρ(0))reaches-88%under 9 T.展开更多
Two-dimensional(2D)nanomaterials with bipolar magnetism show great promise in spintronic applications.Manipulating carriers'spin-polarized orientation in bipolar magnetic semiconductor(BMS)requires a gate voltage,...Two-dimensional(2D)nanomaterials with bipolar magnetism show great promise in spintronic applications.Manipulating carriers'spin-polarized orientation in bipolar magnetic semiconductor(BMS)requires a gate voltage,but that is volatile.Recently,a new method has been proposed to solve the problem of volatility by introducing a ferroelectric gate with proper band alignment.In this paper,we predict that the PdX_(2)(X=F,Cl,Br,I)monolayers are 2D ferromagnetic BMS with dynamic stability,thermal stability,and mechanical stability by first-principles calculations.The critical temperatures are higher than the boiling point of liquid nitrogen and the BMS characteristics are robust against external strains and electric fields for PdCl_(2) and PdBr_(2).Then,we manipulate the spin-polarization of PdCl_(2) and PdBr_(2) by introducing a ferroelectric gate to enable magnetic half-metal/semiconductor switching and spin-up/down polarization switching control.Two kinds of spin devices(multiferroic memory and spin filter)have been proposed to realize the spin-polarized directions of electrons.These results demonstrate that PdCl_(2) and PdBr_(2) with BMS characters can be widely used as a general material structure for spintronic devices.展开更多
Magnetic semiconductors have attracted a lot of attention by having both electronic charge and spin degrees of freedom. In this paper, we obtained twenty magnetic semiconductors such as FeVLaSb, FeVPrSb, FeCrTbSi, CoV...Magnetic semiconductors have attracted a lot of attention by having both electronic charge and spin degrees of freedom. In this paper, we obtained twenty magnetic semiconductors such as FeVLaSb, FeVPrSb, FeCrTbSi, CoVDySi, and CoVHoSi by adding lanthanides to quaternary Heusler compounds based on the Slater-Pauling law and orbital hybridization theory. The relationship between the lattice constants and energy gaps of the magnetic semiconductors with lanthanide elements is investigated by in-depth analysis. These magnetic semiconductors of quaternary Heusler compounds are promising candidates to find applications as spin filtering materials in spintronics devices.展开更多
We present structural,magnetic and optical characteristics of Zn_(1-x)TM_xTe(TM = Mn,Fe,Co,Ni and x = 6.25%),calculated through Wien2 k code,by using full potential linearized augmented plane wave(FP-LAPW) techn...We present structural,magnetic and optical characteristics of Zn_(1-x)TM_xTe(TM = Mn,Fe,Co,Ni and x = 6.25%),calculated through Wien2 k code,by using full potential linearized augmented plane wave(FP-LAPW) technique.The optimization of the crystal structures have been done to compare the ferromagnetic(FM) and antiferromagnetic(AFM) ground state energies,to elucidate the ferromagnetic phase stability,which further has been verified through the formation and cohesive energies.Moreover,the estimated Curie temperatures T_c have demonstrated above room temperature ferromagnetism(RTFM) in Zn_(1-x)TM_xTe(TM =Mn,Fe,Co,Ni and x= 6.25%).The calculated electronic properties have depicted that Mn- and Co-doped ZnTe behave as ferromagnetic semiconductors,while half-metallic ferromagnetic behaviors are observed in Fe- and Ni-doped ZnTe.The presence of ferromagnetism is also demonstrated to be due to both the p-d and s-d hybridizations between the host lattice cations and TM impurities.The calculated band gaps and static real dielectric constants have been observed to vary according to Penn's model.The evaluated band gaps lie in near visible and ultraviolet regions,which make these materials suitable for various important device applications in optoelectronic and spintronic.展开更多
The magnetic properties of single crystals Si,Sr Ti O_(3),La Al O_(3),Mg O,and(La,Sr)(Al,Ta)O_(3)were investigated systematically.Three origins of the magnetizations of these crystals,namely,an intrinsic diamagnetic,a...The magnetic properties of single crystals Si,Sr Ti O_(3),La Al O_(3),Mg O,and(La,Sr)(Al,Ta)O_(3)were investigated systematically.Three origins of the magnetizations of these crystals,namely,an intrinsic diamagnetic,a paramagnetic,and a ferromagnetic contribution,have been found to influence the magnetic signals measured on the crystals,in some important application scenarios such crystals being served as substrates with the magnetic thin film epitaxially grown on.Quantitative analyses methodologies were developed and thorough investigations were performed on the crystals with the intrinsic materials parameters thus revealed,especially that the intrinsic diamagnetic susceptibility differential dχdia/d T were identified quantitatively for the first time in Sr Ti O_(3),La Al O_(3),Mg O,and(La,Sr)(Al,Ta)O_(3).The paramagnetic contribution is found to be the key in terms of the magnetic properties of the crystals,which in turn is in fact a consequence of the 3d impurities doping inside the crystal.All the intrinsic materials parameters are given in this paper as datasets,the datasets are openly available at https://www.doi.org/10.57760/sciencedb.j00113.00028.展开更多
The electronic structures and magnetic properties of diverse transition metal (TM=Fe, Co, and Ni) and nitrogen (N) co-doped monolayer MoS2 are investigated by using density functional theory. The results show that the...The electronic structures and magnetic properties of diverse transition metal (TM=Fe, Co, and Ni) and nitrogen (N) co-doped monolayer MoS2 are investigated by using density functional theory. The results show that the intrinsic MoS2 does not have magnetism initially, but doped with TM (TM=Fe, Co, and Ni) the MoS2 possesses an obvious magnetism distinctly. The magnetic moment mainly comes from unpaired Mo:4d orbitals and the d orbitals of the dopants, as well as the S:3p states. However, the doping system exhibits certain half-metallic properties, so we select N atoms in the V family as a dopant to adjust its half-metal characteristics. The results show that the (Fe, N) co-doped MoS2 can be a satisfactory material for applications in spintronic devices. On this basis, the most stable geometry of the (2Fe-N) co-doped MoS2 system is determined by considering the different configurations of the positions of the two Fe atoms. It is found that the ferromagnetic mechanism of the (2Fe-N) co-doped MoS2 system is caused by the bond spin polarization mechanism of the Fe-Mo-Fe coupling chain. Our results verify that the (Fe, N) co-doped single-layer MoS2 has the conditions required to become a dilute magnetic semiconductor.展开更多
The optical absorption of amorphous silicon (α-Si) films is enhanced by silver (Ag) nanostructures deposited on the films. The reflection at the long wavelength side of localized plasmon polaritons (LPPs) reson...The optical absorption of amorphous silicon (α-Si) films is enhanced by silver (Ag) nanostructures deposited on the films. The reflection at the long wavelength side of localized plasmon polaritons (LPPs) resonance originated from Ag nanostructures is significantly decreased, i.e. the optical absorption is enhanced. The results show that the average reflection value of the amorphous silicon films in the wavelength range of 900-1200 nm could be decreased by 11.4%. Moreover, the reduction of the reflection is found to be mainly dependent on the size of the Ag nanostructures, which is related to the island sizes, i.e. the LPP's resonance peak position.展开更多
The electronic and optical properties of zincblende ZnX(X=S, Se, Te) and ZnX:Co are studied from density functional theory (DFT) based first principles calculations. The local crystal structure changes around the...The electronic and optical properties of zincblende ZnX(X=S, Se, Te) and ZnX:Co are studied from density functional theory (DFT) based first principles calculations. The local crystal structure changes around the Co atoms in the lattice are studied after Co atoms are doped. It is shown that the Co-doped materials have smaller lattice constant (about 0.6%-0.9%). This is mainly due to the shortened Co-X bond length. The (partial) density of states (DOS) is calculated and differences between the pure and doped materials are studied. Results show that for the Co-doped materials, the valence bands are moving upward due to the existence of Co 3d electron states while the conductance bands are moving downward due to the reduced lattice constants. This results in the narrowed band gap of the doped materials. The complex dielectric indices and the absorption coefficients are calculated to examine the influences of the Co atoms on the optical properties. Results show that for the Co-doped materials, the absorption peaks in the high wavelength region are not as sharp and distinct as the undoped materials, and the absorption ranges are extended to even higher wavelength region.展开更多
Nd-doped In_2O_3 nanowires were fabricated by an Au-catalyzed chemical vapor deposition method.Nd atoms were successfully doped into the In_2O_3 host lattice structure,as revealed by energy dispersive x-ray spectrosco...Nd-doped In_2O_3 nanowires were fabricated by an Au-catalyzed chemical vapor deposition method.Nd atoms were successfully doped into the In_2O_3 host lattice structure,as revealed by energy dispersive x-ray spectroscopy,x-ray photoelectron spectroscopy,Raman spectroscopy,and x-ray diffraction.Robust room temperature ferromagnetism was observed in Nd-doped In_2O_3 nanowires,which was attributed to the long-range-mediated magnetization among Nd^(3+)-vacancy complexes through percolation-bound magnetic polarons.展开更多
基金Project supported by the Natural Science Foundation of Shaanxi Province of China(Grant No.2013JQ1018)the Natural Science Foundation of Department of Education of Shaanxi Province of China(Grant No.15JK1759)+3 种基金the Double First-class University Construction Project of Northwest Universitythe financial support of Chinese University of Hong Kong(CUHK)(Grant No.4053084)University Grants Committee of Hong Kong,China(Grant No.24300814)start-up funding of CUHK。
文摘Tuning of the magnetic interaction plays the vital role in reducing the clustering of magnetic dopant in diluted magnetic semiconductors(DMS).Due to the not well understood magnetic mechanism and the interplay between different magnetic mechanisms,no efficient and universal tuning strategy is proposed at present.Here,the magnetic interactions and formation energies of isovalent-doped(Mn) and aliovalent(Cr)-doped LiZnAs are studied based on density functional theory(DFT).It is found that the dopant–dopant distance-dependent magnetic interaction is highly sensitive to the carrier concentration and carrier type and can only be explained by the interplay between two magnetic mechanisms,i.e.,superexchange and Zener’s p–d exchange model.Thus,the magnetic behavior and clustering of magnetic dopant can be tuned by the interplay between two magnetic mechanisms.The insensitivity of the tuning effect to U parameter suggests that our strategy could be universal to other DMS.
基金Project supported by the National Nature Science Foundation of China (Grant Nos 10774180, 90406010 and 6062109)Funds of the Chinese Academy of Sciences for Key Topics in Innovation Engineering (Grant No KJCX2.YW.W09-5)the National Basic Research Program of China (Grant No 2005CB623602)
文摘We study (Ga, Mn)As diluted magnetic semiconductors in terms of the Ruderman-Kittel-Kasuya-Yosida quantum spin model in Green's function approach. Random distributions of the magnetic atoms are treated by using an analytical average of magnetic configurations. Average magnetic moments and spin excitation spectra as functions of temperature can be obtained by solving self-consistent equations, and the Curie temperature TC is given explicitly. Tc is proportional to magnetic atomic concentration, and there exists a maximum for Tc as a function of carrier concentration. Applied to (Ga, Mn)As, the theoretical results are consistent with experiment and the experimental TC can be obtained with reasonable parameters. This modelling can also be applied to other diluted magnetic semiconductors.
基金the National Natural Science Foundation of China(Grant No.12104234)the Natural Science Foundation of Jiangsu Province,China(Grant Nos.BK20210578,20KJB140004,and JSSCBS20210513)+4 种基金Y Pu acknowledges the National Natural Science Foundation of China(Grant Nos.61874060,U1932159,and 61911530220)Jiangsu Specially-Appointed Professor Program,the Natural Science Foundation of Jiangsu Province,China(Grant Nos.BK20181388 and 19KJA180007)the Overseas Researcher Innovation Program of Nanjing,NUPTSF(Grant No.NY217118)F Li Acknowledges the Natural Science Fund for Colleges and Universities in Jiangsu Province,China(Grant No.21KJD140005)the National Natural Science Foundation of China(Grant No.12304085).
文摘The two-dimensional(2D)Janus monolayers are promising in spintronic device application due to their enhanced magnetic couplings and Curie temperatures.Van der Waals CrCl_(3) monolayer has been experimentally proved to have an in-plane magnetic easy axis and a low Curie temperature of 17 K,which will limit its application in spintronic devices.In this work,we propose a new Janus monolayer Cr_(2)Cl_(3)S_(3) based on the first principles calculations.The phonon dispersion and elastic constants confirm that Janus monolayer Cr_(2)Cl_(3)S_(3) is dynamically and mechanically stable.Our Monte Carlo simulation results based on magnetic exchange constants reveal that Janus monolayer Cr_(2)Cl_(3)S_(3) is an intrinsic ferromagnetic semiconductor with TC of 180 K,which is much higher than that of CrCl_(3) due to the enhanced ferromagnetic coupling caused by S substitution.Moreover,the magnetic easy axis of Janus Cr_(2)Cl_(3)S_(3) can be tuned to the perpendicular direction with a large magnetic anisotropy energy(MAE)of 142eV/Cr.Furthermore,the effect of biaxial strain on the magnetic property of Janus monolayer Cr_(2)Cl_(3)S_(3) is evaluated.It is found that the Curie temperature is more robust under tensile strain.This work indicates that the Janus monolayer Cr_(2)Cl_(3)S_(3) presents increased Curie temperature and out-of-plane magnetic easy axis,suggesting greater application potential in 2D spintronic devices.
基金Project supported by the Chinese Ministry of Science and Technology(Grant No.2016YFA0300402)the National Natural Science Foundation of China(Grant No.11574265)+1 种基金the Natural Science Foundation of Zhejiang Province,China(Grant Nos.LR15A040001 and LY14A040007)the Fundamental Research Funds for the Central Universities,China
文摘Diluted ferromagnetic semiconductors(DMSs) that combine the properties of semiconductors with ferromagnetism have potential application in spin-sensitive electronic(spintronic) devices. The search for DMS materials exploded after the observation of ferromagnetic ordering in Ⅲ-Ⅴ(Ga,Mn)As films. Recently, a series of DMS compounds isostructural to iron-based superconductors have been reported. Among them, the highest Curie temperature TCo f 230 K has been achieved in(Ba,K)(Zn,Mn)2As2. However, most DMSs, including(Ga,Mn)As, are p-type, i.e., the carriers that mediate the ferromagnetism are holes. For practical applications, DMSs with n-type carriers are also advantageous. Very recently,a new DMS Ba(Zn,Co)2As2 with n-type carriers has been synthesized. Here we summarize the recent progress on this research stream. We will show that the homogeneous ferromagnetism in these bulk form DMSs has been confirmed by microscopic techniques, i.e., nuclear magnetic resonance(NMR) and muon spin rotation(μSR).
基金supported by the National Key Research and Development Program of China(Grant No.2017YFA0302903)the National Natural Science Foundation of China(Grant Nos.11774422 and 11774424)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Research Funds of Renmin University of China(Grant Nos.14XNLQ03 and 16XNLQ01)
文摘By using first-principles electronic structure calculations, we have studied the magnetic interactions in a proposed BaZn2P2-based diluted magnetic semiconductor(DMS). For a typical compound Ba(Zn(0.944)Mn(0.056))2P2 with only spin doping, due to the superexchange interaction between Mn atoms and the lack of itinerant carriers, the short-range antiferromagnetic coupling dominates. Partially substituting K atoms for Ba atoms, which introduces itinerant hole carriers into the p orbitals of P atoms so as to link distant Mn moments with the spin-polarized hole carriers via the p–d hybridization between P and Mn atoms, is very crucial for the appearance of ferromagnetism in the compound. Furthermore, applying hydrostatic pressure first enhances and then decreases the ferromagnetic coupling in(Ba0.75 K0.25)(Zn(0.944)Mn(0.056))2P2 at a turning point around 15 GPa, which results from the combined effects of the pressure-induced variations of electron delocalization and p–d hybridization. Compared with the BaZn2 As2-based DMS, the substitution of P for As can modulate the magnetic coupling effectively. Both the results for BaZn2 P2-based and BaZn2As2-based DMSs demonstrate that the robust antiferromagnetic(AFM) coupling between the nearest Mn–Mn pairs bridged by anions is harmful to improving the performance of these Ⅱ–Ⅱ–Ⅴ based DMS materials.
基金supported by the National Natural Science Foundation of China (Grant No. 50772122)the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51002176)
文摘This paper reports that the (Ga, Co)-codoped ZnO thin films have been grown by inductively coupled plasma enhanced physical vapour deposition. Room-temperature ferromagnetism is observed for the as-grown thin films. The x-ray absorption fine structure characterization reveals that Co2+ and Ga3+ ions substitute for Zn2+ ions in the ZnO lattice and exclude the possibility of extrinsic ferromagnetism origin. The ferromagnetic (Ga, Co)-codoped ZnO thin films exhibit carrier concentration dependent anomalous Hall effect and positive magnetoresistance at room tempera- ture. The mechanism of anomalous Hall effect and magneto-transport in ferromagnetic ZnO-based diluted magnetic semiconductors is discussed.
基金Project supported by the Shanghai Nanotechnology Promotion Center (Grant No 0452nm071)the National Natural Science Foundation of China (Grant Nos 50702071 and 50772122)
文摘A series of Mn-doped ZnO films have been prepared in different sputtering plasmas by using the inductively coupled plasma enhanced physical vapour deposition. The films show paramagnetic behaviour when they are deposited in an argon plasma. The Hall measurement indicates that ferromagnetism cannot be realized by increasing the electron concentration. However, the room-temperature ferromagnetism is obtained when the films are deposited in a mixed argon-nitrogen plasma. The first-principles calculations reveal that antiferromagnetic ordering is favoured in the case of the substitution of Mn^2+ for Zn^2+ without additional acceptor doping. The substitution of N for O (NO^-) is necessary to induce ferromagnetic couplings in the Zn-Mn-O system. The hybridization between N 2p and Mn 3d provides an empty orbit around the Fermi level. The hopping of Mn 3d electrons through the empty orbit can induce the ferromagnetic coupling. The ferromagnetism in the N-doped Zn-Mn-O system possibly originates from the charge transfer between Mn^2+ and Mn^3+ via NO^-, The key factor is the empty orbit provided by substituting N for O, rather than the conductivity type or the carrier concentration.
基金Project supported by the National Natural Science Foundation of ChinaProject of Ministry of Science and Technology of China
文摘The layered semiconductor BaFZnAs with the tetragonal ZrCuSiAs-type structure has been successfully synthesized.Both the in-situ high-pressure synchrotron x-ray diffraction and the high-pressure Raman scattering measurements demonstrate that the structure of BaFZnAs is stable under pressure up to 17.5 GPa at room temperature. The resistivity and the magnetic susceptibility data show that BaFZnAs is a non-magnetic semiconductor. BaFZnAs is recommended as a candidate of the host material of diluted magnetic semiconductor.
基金supported by the National Natural Science Foundation of China(Grant Nos.5125004 and 10974120)111 Project(Grant No.B13029)the National Basic Research Program of China(Grant Nos.2013CB922303 and 2009CB929202)
文摘We give a brief introduction to the oxide (ZnO, TiO2, In2O3, SnO2, etc.)-based magnetic semiconductors from fundamental material aspects through fascinating magnetic, transport, and optical properties, particularly at room temperature, to promising device applications. The origin of the observed ferromagnetism is also discussed, with a special focus on first-principles investigations of the exchange interactions between transition metal dopants in oxide-based magnetic semiconductors.
基金Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11204164)the National Natural Science Foundation of China (Grant No. 11174184)+1 种基金the National Basic Research Program of China (Grants Nos. 2013CB922303 and 2009CB929202)the National Funds for Distinguished Young Scholars of China (Grant No. 51125004)
文摘Amorphous MnxGe1-x:H ferromagnetic semiconductor films prepared in mixed Ar with 20% H2 by magnetron co- sputtering show global ferromagnetism with positive coercivity at low temperatures. With increasing temperature, the coercivity of MnxGe1-x:H films first changes from positive to negative, and then back to positive again, which was not found in the corresponding MnxGe1-x and other ferromagnetic semiconductors before. For Mn0.4Ge0.6:H film, the inverted Hall loop is also observed at 30 K, which is consistent with the negative coercivity. The negative coercivity is explained by the antiferromagnetic exchange coupling between the H-rich ferromagnetic regions separated by the H-poor non-ferromagnetic spacers. Hydrogenation is a useful method to tune the magnetic properties of MnxGe1-x films for the application in spintronics.
文摘Influence of spin–orbit coupling on spin-polarized electronic transport in magnetic semiconductor nanowires with nanosized sharp domain walls is investigated theoretically.It is shown that the Rashba spin–orbit coupling can enhance significantly the spin-flip scattering of charge carriers from a nanosized sharp domain wall whose extension is much smaller than the carrier's Fermi wavelength.When there are more than one domain wall presented in a magnetic semiconductor nanowire,not only the spin-flip scattering of charge carriers from the domain walls but the quantum interference of charge carriers in the intermediate domain regions between neighboring domain walls may play important roles on spin-polarized electronic transport,and in such cases the influences of the Rashba spin–orbit coupling will depend sensitively both on the domain walls' width and the domain walls' separation.
基金Project supported by the National Key Research and Development Program of China (Grant Nos.2022YFA1402701 and 2022YFA1403202)the National Natural Science Foundation of China (Grant No.12074333)the Key Research and Development Program of Zhejiang Province,China (Grant No.2021C01002)。
文摘We report the successful fabrication of a new 1111-type bulk magnetic semiconductor(La,Ba)(Zn,Mn)SbO through the solid solution of(La,Ba)and(Zn,Mn)in the parent compound LaZnSbO.The polycrystalline samples(La,Ba)(Zn,Mn)SbO crystallize into ZrCuSiAs-type tetragonal structure,which has the same structure as iron-based superconductor LaFeAsO_(1-δ).The DC magnetization measurements indicate the existence of spin-glass ordering,and the coercive field is up to~11500 Oe(1 Oe=79.5775 A·m^(-1)).The AC magnetic susceptibility further determines that the samples evolve into a conventional spin-glass ordering state below the spin freezing temperature T_(f).In addition,the negative magnetoresistance(MR≡[ρ(H)-ρ(0)]/ρ(0))reaches-88%under 9 T.
基金Project supported by the Taishan Scholar Program of Shandong Province,China (Grant No.ts20190939)the Independent Cultivation Program of Innovation Team of Jinan City (Grant No.2021GXRC043)+1 种基金the National Natural Science Foundation of China (Grant No.52173283)the Natural Science Foundation of Shandong Province (Grant No.ZR2020QA052)。
文摘Two-dimensional(2D)nanomaterials with bipolar magnetism show great promise in spintronic applications.Manipulating carriers'spin-polarized orientation in bipolar magnetic semiconductor(BMS)requires a gate voltage,but that is volatile.Recently,a new method has been proposed to solve the problem of volatility by introducing a ferroelectric gate with proper band alignment.In this paper,we predict that the PdX_(2)(X=F,Cl,Br,I)monolayers are 2D ferromagnetic BMS with dynamic stability,thermal stability,and mechanical stability by first-principles calculations.The critical temperatures are higher than the boiling point of liquid nitrogen and the BMS characteristics are robust against external strains and electric fields for PdCl_(2) and PdBr_(2).Then,we manipulate the spin-polarization of PdCl_(2) and PdBr_(2) by introducing a ferroelectric gate to enable magnetic half-metal/semiconductor switching and spin-up/down polarization switching control.Two kinds of spin devices(multiferroic memory and spin filter)have been proposed to realize the spin-polarized directions of electrons.These results demonstrate that PdCl_(2) and PdBr_(2) with BMS characters can be widely used as a general material structure for spintronic devices.
基金Project supported by Inner Mongolia Science Foundation, China (Grant No. 2022MS01012)the National Natural Science Foundation of China (Grant No. 11904185)。
文摘Magnetic semiconductors have attracted a lot of attention by having both electronic charge and spin degrees of freedom. In this paper, we obtained twenty magnetic semiconductors such as FeVLaSb, FeVPrSb, FeCrTbSi, CoVDySi, and CoVHoSi by adding lanthanides to quaternary Heusler compounds based on the Slater-Pauling law and orbital hybridization theory. The relationship between the lattice constants and energy gaps of the magnetic semiconductors with lanthanide elements is investigated by in-depth analysis. These magnetic semiconductors of quaternary Heusler compounds are promising candidates to find applications as spin filtering materials in spintronics devices.
基金the University of the Punjab, Lahore for financial support through faculty research grant program
文摘We present structural,magnetic and optical characteristics of Zn_(1-x)TM_xTe(TM = Mn,Fe,Co,Ni and x = 6.25%),calculated through Wien2 k code,by using full potential linearized augmented plane wave(FP-LAPW) technique.The optimization of the crystal structures have been done to compare the ferromagnetic(FM) and antiferromagnetic(AFM) ground state energies,to elucidate the ferromagnetic phase stability,which further has been verified through the formation and cohesive energies.Moreover,the estimated Curie temperatures T_c have demonstrated above room temperature ferromagnetism(RTFM) in Zn_(1-x)TM_xTe(TM =Mn,Fe,Co,Ni and x= 6.25%).The calculated electronic properties have depicted that Mn- and Co-doped ZnTe behave as ferromagnetic semiconductors,while half-metallic ferromagnetic behaviors are observed in Fe- and Ni-doped ZnTe.The presence of ferromagnetism is also demonstrated to be due to both the p-d and s-d hybridizations between the host lattice cations and TM impurities.The calculated band gaps and static real dielectric constants have been observed to vary according to Penn's model.The evaluated band gaps lie in near visible and ultraviolet regions,which make these materials suitable for various important device applications in optoelectronic and spintronic.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61974161 and 11474324)。
文摘The magnetic properties of single crystals Si,Sr Ti O_(3),La Al O_(3),Mg O,and(La,Sr)(Al,Ta)O_(3)were investigated systematically.Three origins of the magnetizations of these crystals,namely,an intrinsic diamagnetic,a paramagnetic,and a ferromagnetic contribution,have been found to influence the magnetic signals measured on the crystals,in some important application scenarios such crystals being served as substrates with the magnetic thin film epitaxially grown on.Quantitative analyses methodologies were developed and thorough investigations were performed on the crystals with the intrinsic materials parameters thus revealed,especially that the intrinsic diamagnetic susceptibility differential dχdia/d T were identified quantitatively for the first time in Sr Ti O_(3),La Al O_(3),Mg O,and(La,Sr)(Al,Ta)O_(3).The paramagnetic contribution is found to be the key in terms of the magnetic properties of the crystals,which in turn is in fact a consequence of the 3d impurities doping inside the crystal.All the intrinsic materials parameters are given in this paper as datasets,the datasets are openly available at https://www.doi.org/10.57760/sciencedb.j00113.00028.
基金Project supported by the Key Project of the National Natural Science Foundation of China(Grant No.51702089)the National Natural Science Foundation of China(Grant Nos.21603109 and 11804081)+6 种基金the Henan Joint Fund of the National Natural Science Foundation of China(Grant No.U1404216)China Postdoctoral Science Foundation(Grant No.2019M652425)the One Thousand Talent Plan of Shaanxi Province,China,the Natural Science Foundation of Henan Province,China(Grant Nos.182102210305 and 19B430003)the Key Research Project for the Universities of Henan Province,China(Grant No.19A140009)the Doctoral Foundation of Henan Polytechnic University,China(Grant No.B2018-38)the Open Project of Key Laboratory of Radio Frequency and Micro-Nanothe Fund from the Electronics of Jiangsu Province,China(Grant No.LRME201601).
文摘The electronic structures and magnetic properties of diverse transition metal (TM=Fe, Co, and Ni) and nitrogen (N) co-doped monolayer MoS2 are investigated by using density functional theory. The results show that the intrinsic MoS2 does not have magnetism initially, but doped with TM (TM=Fe, Co, and Ni) the MoS2 possesses an obvious magnetism distinctly. The magnetic moment mainly comes from unpaired Mo:4d orbitals and the d orbitals of the dopants, as well as the S:3p states. However, the doping system exhibits certain half-metallic properties, so we select N atoms in the V family as a dopant to adjust its half-metal characteristics. The results show that the (Fe, N) co-doped MoS2 can be a satisfactory material for applications in spintronic devices. On this basis, the most stable geometry of the (2Fe-N) co-doped MoS2 system is determined by considering the different configurations of the positions of the two Fe atoms. It is found that the ferromagnetic mechanism of the (2Fe-N) co-doped MoS2 system is caused by the bond spin polarization mechanism of the Fe-Mo-Fe coupling chain. Our results verify that the (Fe, N) co-doped single-layer MoS2 has the conditions required to become a dilute magnetic semiconductor.
基金Supported by the National Basic Research Program of China under Grant No 2007CB613403, and the Natural Science Foundation of Zhejiang Province (Y1080068).
文摘The optical absorption of amorphous silicon (α-Si) films is enhanced by silver (Ag) nanostructures deposited on the films. The reflection at the long wavelength side of localized plasmon polaritons (LPPs) resonance originated from Ag nanostructures is significantly decreased, i.e. the optical absorption is enhanced. The results show that the average reflection value of the amorphous silicon films in the wavelength range of 900-1200 nm could be decreased by 11.4%. Moreover, the reduction of the reflection is found to be mainly dependent on the size of the Ag nanostructures, which is related to the island sizes, i.e. the LPP's resonance peak position.
基金Project supported by the National Natural Science Foundation of China (Grant No 10564002) and the 0pen Foundations of Key Laboratory for 0pto-electronics of Jiangxi Province, China (Grant Nos 2004003 and 2004008), the Natural Science Foundation of Jiangxi Province, China (Grant No 0512017) and the Youth Science Program of Jiangxi Normal University, China(Grant No 1075).
文摘The electronic and optical properties of zincblende ZnX(X=S, Se, Te) and ZnX:Co are studied from density functional theory (DFT) based first principles calculations. The local crystal structure changes around the Co atoms in the lattice are studied after Co atoms are doped. It is shown that the Co-doped materials have smaller lattice constant (about 0.6%-0.9%). This is mainly due to the shortened Co-X bond length. The (partial) density of states (DOS) is calculated and differences between the pure and doped materials are studied. Results show that for the Co-doped materials, the valence bands are moving upward due to the existence of Co 3d electron states while the conductance bands are moving downward due to the reduced lattice constants. This results in the narrowed band gap of the doped materials. The complex dielectric indices and the absorption coefficients are calculated to examine the influences of the Co atoms on the optical properties. Results show that for the Co-doped materials, the absorption peaks in the high wavelength region are not as sharp and distinct as the undoped materials, and the absorption ranges are extended to even higher wavelength region.
基金Project supported by the National Natural Science Foundation of China(Grant No.11274003)the Priority Academic Program Development of Jiangsu Higher Education Institutions,Chinathe Fundamental Research Funds for the Central Universities,China
文摘Nd-doped In_2O_3 nanowires were fabricated by an Au-catalyzed chemical vapor deposition method.Nd atoms were successfully doped into the In_2O_3 host lattice structure,as revealed by energy dispersive x-ray spectroscopy,x-ray photoelectron spectroscopy,Raman spectroscopy,and x-ray diffraction.Robust room temperature ferromagnetism was observed in Nd-doped In_2O_3 nanowires,which was attributed to the long-range-mediated magnetization among Nd^(3+)-vacancy complexes through percolation-bound magnetic polarons.