It is important to calibrate micro-parameters for applying partied flow code(PFC)to study mechanical characteristics and failure mechanism of rock materials.Uniform design method is firstly adopted to determine the mi...It is important to calibrate micro-parameters for applying partied flow code(PFC)to study mechanical characteristics and failure mechanism of rock materials.Uniform design method is firstly adopted to determine the microscopic parameters of parallel-bonded particle model for three-dimensional discrete element particle flow code(PFC3D).Variation ranges of microscopic of the microscopic parameters are created by analyzing the effects of microscopic parameters on macroscopic parameters(elastic modulus E,Poisson ratio v,uniaxial compressive strengthσc,and ratio of crack initial stress to uniaxial compressive strengthσci/σc)in order to obtain the actual uniform design talbe.The calculation equations of the microscopic and macroscopic parameters of rock materials can be established by the actual uniform design table and the regression analysis and thus the PFC3D microscopic parameters can be quantitatively determined.The PFC3D simulated results of the intact and pre-cracked rock specimens under uniaxial and triaxial compressions(including the macroscopic mechanical parameters,stress−strain curves and failure process)are in good agreement with experimental results,which can prove the validity of the calculation equations of microscopic and macroscopic parameters.展开更多
Different types of nuclear parameters and corrosion behavior were deduced for carbon steel(AISI 1018),austenitic(304 SS),and duplex(2507 SS)stainless steel alloys.Three types of neutron energies as well as nine gamma ...Different types of nuclear parameters and corrosion behavior were deduced for carbon steel(AISI 1018),austenitic(304 SS),and duplex(2507 SS)stainless steel alloys.Three types of neutron energies as well as nine gamma ray energy lines(121.78-1407.92 keV)were used to evaluate the macroscopic neutron cross-sections(∑,cm^-1)and mass attenuation coefficients[σ,cm^2·g^-1)of gamma ray respectively.The corrosion behavior was investigated using different electrochemical techniques.The results showed that the stainless-steel alloys had a good attitude than that of carbon steel alloy for neutron and gamma ray parameters,especially the duplex stainless steel.The calculated values of mass attenuation coefficient using WinXcom computer program(Version 3.1),exhibited a very good agreement with the experimental values of that parameters.Moreover,the results indicated that duplex stainless-steel exhibited corrosion resistance higher than 304 SS and AISI 1018 steel alloys.展开更多
The optimal operation of water distribution networks under local pipe failures, such as water main breaks, was proposed. Based on a hydraulic analysis and a simulation of water distribution networks, a macroscopic mod...The optimal operation of water distribution networks under local pipe failures, such as water main breaks, was proposed. Based on a hydraulic analysis and a simulation of water distribution networks, a macroscopic model for a network under a local pipe failure was established by the statistical regression. After the operation objectives under a local pipe failure were determined, the optimal operation model was developed and solved by the genetic algorithm. The program was developed and examined by a city distribution network. The optimal operation alternative shows that the electricity cost is saved approximately 11%, the income of the water corporation is increased approximately 5%, and the pressure in the water distribution network is distributed evenly to ensure the network safe operation. Therefore, the proposed method for optimal operation under local pipe failure is feasible and cost-effective.展开更多
According to the different stress paths,similar model test and PFC simulation test of tunnel surrounding rock are designed to compare the failure mechanisms at macroscopic and mesoscopic scales.The following conclusio...According to the different stress paths,similar model test and PFC simulation test of tunnel surrounding rock are designed to compare the failure mechanisms at macroscopic and mesoscopic scales.The following conclusions are drawn.1)Excavation unloading will disturb the surrounding rock to form a certain excavation damaged zone.2)Under the loading path,the stress of surrounding rock failure is 1.500 MPa;under the unloading path with initial stress of 60% σ_(Zmax) and 100% σ_(Zmax),the failure stress is 1.583 and 1.833 MPa respectively in the model test.3)In terms of the failure mode of rocks under different stress paths,tensile fractures first appear in two sides of the vertical walls;thereafter,the spandrel and arch foot are loosened due to the stress concentration.The fractures gradually coalesce with those occurring in the vertical walls.4)In the process of excavation unloading,the proportion of shear cracks is 35.3%,and the rock is subject to strong shear effect.The final failure surface is approximately V-shaped.5)The tangential peak stress on the vertical walls at the free face is the lowest;the vertical walls at the free face show the poorest bearing capacity and are easily subjected to tensile failure.展开更多
Titanium-doped sapphire is a phonon-terminated laser crystal which is applied in many fields. But residual infrared absorption in laser operation region of the crystal hindered the improvement of the crystal quality.T...Titanium-doped sapphire is a phonon-terminated laser crystal which is applied in many fields. But residual infrared absorption in laser operation region of the crystal hindered the improvement of the crystal quality.The macroscopic defects in the crystal often perplexed growers.展开更多
基金Projects(51474251,51874351)supported by the National Natural Science Foundation,China。
文摘It is important to calibrate micro-parameters for applying partied flow code(PFC)to study mechanical characteristics and failure mechanism of rock materials.Uniform design method is firstly adopted to determine the microscopic parameters of parallel-bonded particle model for three-dimensional discrete element particle flow code(PFC3D).Variation ranges of microscopic of the microscopic parameters are created by analyzing the effects of microscopic parameters on macroscopic parameters(elastic modulus E,Poisson ratio v,uniaxial compressive strengthσc,and ratio of crack initial stress to uniaxial compressive strengthσci/σc)in order to obtain the actual uniform design talbe.The calculation equations of the microscopic and macroscopic parameters of rock materials can be established by the actual uniform design table and the regression analysis and thus the PFC3D microscopic parameters can be quantitatively determined.The PFC3D simulated results of the intact and pre-cracked rock specimens under uniaxial and triaxial compressions(including the macroscopic mechanical parameters,stress−strain curves and failure process)are in good agreement with experimental results,which can prove the validity of the calculation equations of microscopic and macroscopic parameters.
文摘Different types of nuclear parameters and corrosion behavior were deduced for carbon steel(AISI 1018),austenitic(304 SS),and duplex(2507 SS)stainless steel alloys.Three types of neutron energies as well as nine gamma ray energy lines(121.78-1407.92 keV)were used to evaluate the macroscopic neutron cross-sections(∑,cm^-1)and mass attenuation coefficients[σ,cm^2·g^-1)of gamma ray respectively.The corrosion behavior was investigated using different electrochemical techniques.The results showed that the stainless-steel alloys had a good attitude than that of carbon steel alloy for neutron and gamma ray parameters,especially the duplex stainless steel.The calculated values of mass attenuation coefficient using WinXcom computer program(Version 3.1),exhibited a very good agreement with the experimental values of that parameters.Moreover,the results indicated that duplex stainless-steel exhibited corrosion resistance higher than 304 SS and AISI 1018 steel alloys.
基金Project(50278062) supported by the National Natural Science Foundation of ChinaProject(003611611)supported by the Natural Science Foundation of Tianjin, China
文摘The optimal operation of water distribution networks under local pipe failures, such as water main breaks, was proposed. Based on a hydraulic analysis and a simulation of water distribution networks, a macroscopic model for a network under a local pipe failure was established by the statistical regression. After the operation objectives under a local pipe failure were determined, the optimal operation model was developed and solved by the genetic algorithm. The program was developed and examined by a city distribution network. The optimal operation alternative shows that the electricity cost is saved approximately 11%, the income of the water corporation is increased approximately 5%, and the pressure in the water distribution network is distributed evenly to ensure the network safe operation. Therefore, the proposed method for optimal operation under local pipe failure is feasible and cost-effective.
基金Project(52179104)supported by the National Natural Science Foundation of ChinaProjects(ZR2020ME099,ZR2020MD111,ZR2019BEE051)supported by the Shandong Provincial Natural Science Foundation,China。
文摘According to the different stress paths,similar model test and PFC simulation test of tunnel surrounding rock are designed to compare the failure mechanisms at macroscopic and mesoscopic scales.The following conclusions are drawn.1)Excavation unloading will disturb the surrounding rock to form a certain excavation damaged zone.2)Under the loading path,the stress of surrounding rock failure is 1.500 MPa;under the unloading path with initial stress of 60% σ_(Zmax) and 100% σ_(Zmax),the failure stress is 1.583 and 1.833 MPa respectively in the model test.3)In terms of the failure mode of rocks under different stress paths,tensile fractures first appear in two sides of the vertical walls;thereafter,the spandrel and arch foot are loosened due to the stress concentration.The fractures gradually coalesce with those occurring in the vertical walls.4)In the process of excavation unloading,the proportion of shear cracks is 35.3%,and the rock is subject to strong shear effect.The final failure surface is approximately V-shaped.5)The tangential peak stress on the vertical walls at the free face is the lowest;the vertical walls at the free face show the poorest bearing capacity and are easily subjected to tensile failure.
文摘Titanium-doped sapphire is a phonon-terminated laser crystal which is applied in many fields. But residual infrared absorption in laser operation region of the crystal hindered the improvement of the crystal quality.The macroscopic defects in the crystal often perplexed growers.