In order to further improve the driving performance of ionic polymer metal composites(IPMCs),Nafion/graphene quantum dots(GQDs)hybrid membranes incorporating GQDs with various contents of 0,0.1 wt.%,0.5 wt.%,1.0 wt.%,...In order to further improve the driving performance of ionic polymer metal composites(IPMCs),Nafion/graphene quantum dots(GQDs)hybrid membranes incorporating GQDs with various contents of 0,0.1 wt.%,0.5 wt.%,1.0 wt.%,2.0 wt.%and 4.0 wt.%were fabricated by solution casting,and then IPMCs were manufactured by electroless plating.The water contents and elastic moduli of the hybrid membranes were tested.The morphology characteristics of the hybrid membranes and the IPMCs were observed,and the current,AC impedance,blocking force and displacement of the IPMCs were measured.The results show that the elastic modulus of the hybrid membranes decreases,the water content increases,and the actuation performance of the IPMCs improves significantly after the addition of GQDs.IPMC with 1.0 wt.%GQDs exhibits the best driving property.Compared with the IPMC without GQDs,the working current,ion conductivity,blocking force,and tip displacement increase by 94.67%,311.11%,53.66%,and 66.07%,respectively.These results lay a solid foundation for the preparation of IPMCs with high performance,and further broaden their applications in biomedical devices and bionic robots.展开更多
In this study,a uniaxial cyclic compression test is conducted on coal-rock composite structures under two cyclic loads using MTSE45.104 testing apparatus to investigate the macro-mesoscopic deformation,damage behavior...In this study,a uniaxial cyclic compression test is conducted on coal-rock composite structures under two cyclic loads using MTSE45.104 testing apparatus to investigate the macro-mesoscopic deformation,damage behavior,and energy evolution characteristics of these structures under different cyclic stress disturbances.Three loading and unloading rates(LURs)are tested to examine the damage behaviors and energy-driven characteristics of the composites.The findings reveal that the energy-driven behavior,mechanical properties,and macro-micro degradation characteristics of the composites are significantly influenced by the loading rate.Under the gradual cyclic loading and unloading(CLU)path with a constant lower limit(path I)and the CLU path with variable upper and lower boundaries(path II),an increase in LURs from 0.05 to 0.15 mm/min reduces the average loading time by 32.39%and 48.60%,respectively.Consequently,the total number of cracks in the samples increases by 1.66-fold for path I and 1.41-fold for path II.As LURs further increase,the energy storage limit of samples expands,leading to a higher proportion of transmatrix and shear cracks.Under both cyclic loading conditions,a broader cyclic stress range promotes energy dissipation and the formation of internal fractures.Notably,at higher loading rates,cracks tend to propagate along primary weak surfaces,leading to an increased incidence of intermatrix fractures.This behavior indicates a microscopic feature of the failure mechanisms in composite structures.These results provide a theoretical basis for elucidating the damage and failure characteristics of coal-rock composite structures under cyclic stress disturbances.展开更多
基金Projects(51605220,U1637101)supported by the National Natural Science Foundation of ChinaProject(BK20160793)supported by the Jiangsu Provincial Natural Science Foundation,ChinaProject(NS2020029)supported by the Fundamental Research Funds for the Central Universities,China。
文摘In order to further improve the driving performance of ionic polymer metal composites(IPMCs),Nafion/graphene quantum dots(GQDs)hybrid membranes incorporating GQDs with various contents of 0,0.1 wt.%,0.5 wt.%,1.0 wt.%,2.0 wt.%and 4.0 wt.%were fabricated by solution casting,and then IPMCs were manufactured by electroless plating.The water contents and elastic moduli of the hybrid membranes were tested.The morphology characteristics of the hybrid membranes and the IPMCs were observed,and the current,AC impedance,blocking force and displacement of the IPMCs were measured.The results show that the elastic modulus of the hybrid membranes decreases,the water content increases,and the actuation performance of the IPMCs improves significantly after the addition of GQDs.IPMC with 1.0 wt.%GQDs exhibits the best driving property.Compared with the IPMC without GQDs,the working current,ion conductivity,blocking force,and tip displacement increase by 94.67%,311.11%,53.66%,and 66.07%,respectively.These results lay a solid foundation for the preparation of IPMCs with high performance,and further broaden their applications in biomedical devices and bionic robots.
基金Project(2023YFC3009003) supported by the National Key R&D Program of ChinaProjects(52130409, 52121003, 52374249, 52204220) supported by the National Natural Science Foundation of ChinaProject(2024JCCXAQ01) supported by the Fundamental Research Funds for the Central Universities,China。
文摘In this study,a uniaxial cyclic compression test is conducted on coal-rock composite structures under two cyclic loads using MTSE45.104 testing apparatus to investigate the macro-mesoscopic deformation,damage behavior,and energy evolution characteristics of these structures under different cyclic stress disturbances.Three loading and unloading rates(LURs)are tested to examine the damage behaviors and energy-driven characteristics of the composites.The findings reveal that the energy-driven behavior,mechanical properties,and macro-micro degradation characteristics of the composites are significantly influenced by the loading rate.Under the gradual cyclic loading and unloading(CLU)path with a constant lower limit(path I)and the CLU path with variable upper and lower boundaries(path II),an increase in LURs from 0.05 to 0.15 mm/min reduces the average loading time by 32.39%and 48.60%,respectively.Consequently,the total number of cracks in the samples increases by 1.66-fold for path I and 1.41-fold for path II.As LURs further increase,the energy storage limit of samples expands,leading to a higher proportion of transmatrix and shear cracks.Under both cyclic loading conditions,a broader cyclic stress range promotes energy dissipation and the formation of internal fractures.Notably,at higher loading rates,cracks tend to propagate along primary weak surfaces,leading to an increased incidence of intermatrix fractures.This behavior indicates a microscopic feature of the failure mechanisms in composite structures.These results provide a theoretical basis for elucidating the damage and failure characteristics of coal-rock composite structures under cyclic stress disturbances.