Effective fault detection techniques can help flotation plant reduce reagents consumption,increase mineral recovery,and reduce labor intensity.Traditional,online fault detection methods during flotation processes have...Effective fault detection techniques can help flotation plant reduce reagents consumption,increase mineral recovery,and reduce labor intensity.Traditional,online fault detection methods during flotation processes have concentrated on extracting a specific froth feature for segmentation,like color,shape,size and texture,always leading to undesirable accuracy and efficiency since the same segmentation algorithm could not be applied to every case.In this work,a new integrated method based on convolution neural network(CNN)combined with transfer learning approach and support vector machine(SVM)is proposed to automatically recognize the flotation condition.To be more specific,CNN function as a trainable feature extractor to process the froth images and SVM is used as a recognizer to implement fault detection.As compared with the existed recognition methods,it turns out that the CNN-SVM model can automatically retrieve features from the raw froth images and perform fault detection with high accuracy.Hence,a CNN-SVM based,real-time flotation monitoring system is proposed for application in an antimony flotation plant in China.展开更多
Vibration-based pavement condition(roughness and obvious anomalies)monitoring has been expanding in road engineering.However,the indistinctive transverse cracking has hardly been considered.Therefore,a vehicle-based n...Vibration-based pavement condition(roughness and obvious anomalies)monitoring has been expanding in road engineering.However,the indistinctive transverse cracking has hardly been considered.Therefore,a vehicle-based novel method is proposed for detecting the transverse cracking through signal processing techniques and support vector machine(SVM).The vibration signals of the car traveling on the transverse-cracked and the crack-free sections were subjected to signal processing in time domain,frequency domain and wavelet domain,aiming to find indices that can discriminate vibration signal between the cracked and uncracked section.These indices were used to form 8 SVM models.The model with the highest accuracy and F1-measure was preferred,consisting of features including vehicle speed,range,relative standard deviation,maximum Fourier coefficient,and wavelet coefficient.Therefore,a crack and crack-free classifier was developed.Then its feasibility was investigated by 2292 pavement sections.The detection accuracy and F1-measure are 97.25%and 85.25%,respectively.The cracking detection approach proposed in this paper and the smartphone-based detection method for IRI and other distress may form a comprehensive pavement condition survey system.展开更多
Support vector machine(SVM)is easily affected by noises and outliers,and its training time dramatically increases with the growing in number of training samples.Satellite cloud image may easily be deteriorated by nois...Support vector machine(SVM)is easily affected by noises and outliers,and its training time dramatically increases with the growing in number of training samples.Satellite cloud image may easily be deteriorated by noises and intensity non-uniformity with a huge amount of data needs to be processed regularly,so it is hard to detect convective clouds in satellite image using traditional SVM.To deal with this problem,a novel method for detection of convective clouds was proposed based on fast fuzzy support vector machine(FFSVM).FFSVM was constructed by eliminating feeble samples and designing new membership function as two aspects.Firstly,according to the distribution characteristics of fuzzy inseparable sample set and the fact that the classification hyper-plane is only determined by support vectors,this paper uses SVDD,Gaussian model and border vector extraction model comprehensively to design a sample selection method in three steps,which can eliminate most of redundant samples and keep possible support vectors.Then,by defining adaptive parameters related to attenuation rate and critical membership on the basis of the distribution characteristics of training set,an adaptive membership function is designed.Finally,the FFSVM is trained by the remaining samples using adaptive membership function to detect convective clouds.The experiments on FY-2D satellite images show that the proposed method,compared with traditional FSVM,not only remarkably reduces training time,but also further improves the accuracy of convective clouds detection.展开更多
A method to detect airports in large space-borne synthetic aperture radar(SAR) imagery is studied.First,the large SAR imagery is segmented according to amplitude characteristics using maximum a posteriori(MAP) est...A method to detect airports in large space-borne synthetic aperture radar(SAR) imagery is studied.First,the large SAR imagery is segmented according to amplitude characteristics using maximum a posteriori(MAP) estimator based on the heavytailed Rayleigh model.The attention is then paid on the object of interest(OOI) extracted from the large images.The minimumarea enclosing rectangle(MER) of OOI is created via a rotating calipers algorithm.The projection histogram(PH) of MER for OOI is then computed and the scale and rotation invariant feature for OOI are extracted from the statistical characteristics of PH.A support vector machine(SVM) classifier is trained using those feature parameters and the airport is detected by the SVM classifier and Hough transform.The application in space-borne SAR images demonstrates the effectiveness of the proposed method.展开更多
The detection and recognition of radar signals play a critical role in the maintenance of future electronic warfare(EW).So far,however,there are still problems with signal detection and recognition,especially in the l...The detection and recognition of radar signals play a critical role in the maintenance of future electronic warfare(EW).So far,however,there are still problems with signal detection and recognition,especially in the low probability of intercept(LPI)radar.This paper explores the usefulness of such an algorithm in the scenario of LPI radar signal detection and recognition based on visibility graphs(VG).More network and feature information can be extracted in the VG two-dimensional space,this algorithm can solve the problem of signal recognition using the autocorrelation function.Wavelet denoising processing is introduced into the signal to be tested,and the denoised signal is converted to the VG domain.Then,the signal detection is performed by using the constant false alarm of the VG average degree.Next,weight the converted graph.Finally,perform feature extraction on the weighted image,and use the feature to complete the recognition.It is testified that the proposed algorithm offers significant improvements,such as robustness to noise,and the detection and recognition accuracy,over the recent researches.展开更多
Solar arrays are important and indispensable parts of spacecraft and provide energy support for spacecraft to operate in orbit and complete on-orbit missions.When a spacecraft is in orbit,because the solar array is ex...Solar arrays are important and indispensable parts of spacecraft and provide energy support for spacecraft to operate in orbit and complete on-orbit missions.When a spacecraft is in orbit,because the solar array is exposed to the harsh space environment,with increasing working time,the performance of its internal electronic components gradually degrade until abnormal damage occurs.This damage makes solar array power generation unable to fully meet the energy demand of a spacecraft.Therefore,timely and accurate detection of solar array anomalies is of great significance for the on-orbit operation and maintenance management of spacecraft.In this paper,we propose an anomaly detection method for spacecraft solar arrays based on the integrated least squares support vector machine(ILS-SVM)model:it selects correlated telemetry data from spacecraft solar arrays to form a training set and extracts n groups of training subsets from this set,then gets n corresponding least squares support vector machine(LS-SVM)submodels by training on these training subsets,respectively;after that,the ILS-SVM model is obtained by integrating these submodels through a weighting operation to increase the prediction accuracy and so on;finally,based on the obtained ILS-SVM model,a parameterfree and unsupervised anomaly determination method is proposed to detect the health status of solar arrays.We use the telemetry data set from a satellite in orbit to carry out experimental verification and find that the proposed method can diagnose solar array anomalies in time and can capture the signs before a solar array anomaly occurs,which reflects the applicability of the method.展开更多
A detecting method based on machine vision was put forward to test the performance of seedmeter with corn and soybean seeds as test samples,in which MATLAB software was applied to process image data and analyze the re...A detecting method based on machine vision was put forward to test the performance of seedmeter with corn and soybean seeds as test samples,in which MATLAB software was applied to process image data and analyze the results.The experimental results showed that the mean value of absolute error of the sowing speed for soybean was 0.004-0.68 seed ? s-1;the mean value of relative error was from 6.5% to 130%,and there were no significant differences of mean value,standard deviation and coefficient of variation of flowing seeds between manual statistics and MATLAB statistics.The machine vision method was proved to be time-saving,labor-saving and no-touching in the seedmeter precision detecting.展开更多
Current research on target detection and recognition from synthetic aperture radar (SAR) images is usually carried out separately. It is difficult to verify the ability of a target recognition algorithm for adapting...Current research on target detection and recognition from synthetic aperture radar (SAR) images is usually carried out separately. It is difficult to verify the ability of a target recognition algorithm for adapting to changes in the environment. To realize the whole process of SAR automatic target recognition (ATR), es- pecially for the detection and recognition of vehicles, an algorithm based on kernel fisher discdminant analysis (KFDA) is proposed. First, in order to make a better description of the difference be- tween the background and the target, KFDA is extended to the detection part. Image samples are obtained with a dual-window approach and features of the inner and outer window samples are extracted by using KFDA. The difference between the features of inner and outer window samples is compared with a threshold to determine whether a vehicle exists. Second, for the target area, we propose an improved KFDA-IMED (image Euclidean distance) combined with a support vector machine (SVM) to recognize the vehicles. Experimental results validate the performance of our method. On the detection task, our proposed method obtains not only a high detection rate but also a low false alarm rate without using any prior information. For the recognition task, our method overcomes the SAR image aspect angle sensitivity, reduces the requirements for image preprocessing and improves the recogni- tion rate.展开更多
基金Projects(61621062,61563015)supported by the National Natural Science Foundation of ChinaProject(2016zzts056)supported by the Central South University Graduate Independent Exploration Innovation Program,China
文摘Effective fault detection techniques can help flotation plant reduce reagents consumption,increase mineral recovery,and reduce labor intensity.Traditional,online fault detection methods during flotation processes have concentrated on extracting a specific froth feature for segmentation,like color,shape,size and texture,always leading to undesirable accuracy and efficiency since the same segmentation algorithm could not be applied to every case.In this work,a new integrated method based on convolution neural network(CNN)combined with transfer learning approach and support vector machine(SVM)is proposed to automatically recognize the flotation condition.To be more specific,CNN function as a trainable feature extractor to process the froth images and SVM is used as a recognizer to implement fault detection.As compared with the existed recognition methods,it turns out that the CNN-SVM model can automatically retrieve features from the raw froth images and perform fault detection with high accuracy.Hence,a CNN-SVM based,real-time flotation monitoring system is proposed for application in an antimony flotation plant in China.
基金Project(51778482)supported by the National Natural Science Foundation of China。
文摘Vibration-based pavement condition(roughness and obvious anomalies)monitoring has been expanding in road engineering.However,the indistinctive transverse cracking has hardly been considered.Therefore,a vehicle-based novel method is proposed for detecting the transverse cracking through signal processing techniques and support vector machine(SVM).The vibration signals of the car traveling on the transverse-cracked and the crack-free sections were subjected to signal processing in time domain,frequency domain and wavelet domain,aiming to find indices that can discriminate vibration signal between the cracked and uncracked section.These indices were used to form 8 SVM models.The model with the highest accuracy and F1-measure was preferred,consisting of features including vehicle speed,range,relative standard deviation,maximum Fourier coefficient,and wavelet coefficient.Therefore,a crack and crack-free classifier was developed.Then its feasibility was investigated by 2292 pavement sections.The detection accuracy and F1-measure are 97.25%and 85.25%,respectively.The cracking detection approach proposed in this paper and the smartphone-based detection method for IRI and other distress may form a comprehensive pavement condition survey system.
基金supported in part by the National Natural Science Foundation of China under Grants (61471212)Natural Science Foundation of Zhejiang Province under Grants (LY16F010001)+1 种基金Science and Technology Program of Zhejiang Meteorological Bureau under Grants (2016YB01)Natural Science Foundation of Ningbo under Grants(2016A610091,2017A610297)
文摘Support vector machine(SVM)is easily affected by noises and outliers,and its training time dramatically increases with the growing in number of training samples.Satellite cloud image may easily be deteriorated by noises and intensity non-uniformity with a huge amount of data needs to be processed regularly,so it is hard to detect convective clouds in satellite image using traditional SVM.To deal with this problem,a novel method for detection of convective clouds was proposed based on fast fuzzy support vector machine(FFSVM).FFSVM was constructed by eliminating feeble samples and designing new membership function as two aspects.Firstly,according to the distribution characteristics of fuzzy inseparable sample set and the fact that the classification hyper-plane is only determined by support vectors,this paper uses SVDD,Gaussian model and border vector extraction model comprehensively to design a sample selection method in three steps,which can eliminate most of redundant samples and keep possible support vectors.Then,by defining adaptive parameters related to attenuation rate and critical membership on the basis of the distribution characteristics of training set,an adaptive membership function is designed.Finally,the FFSVM is trained by the remaining samples using adaptive membership function to detect convective clouds.The experiments on FY-2D satellite images show that the proposed method,compared with traditional FSVM,not only remarkably reduces training time,but also further improves the accuracy of convective clouds detection.
文摘A method to detect airports in large space-borne synthetic aperture radar(SAR) imagery is studied.First,the large SAR imagery is segmented according to amplitude characteristics using maximum a posteriori(MAP) estimator based on the heavytailed Rayleigh model.The attention is then paid on the object of interest(OOI) extracted from the large images.The minimumarea enclosing rectangle(MER) of OOI is created via a rotating calipers algorithm.The projection histogram(PH) of MER for OOI is then computed and the scale and rotation invariant feature for OOI are extracted from the statistical characteristics of PH.A support vector machine(SVM) classifier is trained using those feature parameters and the airport is detected by the SVM classifier and Hough transform.The application in space-borne SAR images demonstrates the effectiveness of the proposed method.
基金This work was supported by the National Defence Pre-research Foundation of China(30502010103).
文摘The detection and recognition of radar signals play a critical role in the maintenance of future electronic warfare(EW).So far,however,there are still problems with signal detection and recognition,especially in the low probability of intercept(LPI)radar.This paper explores the usefulness of such an algorithm in the scenario of LPI radar signal detection and recognition based on visibility graphs(VG).More network and feature information can be extracted in the VG two-dimensional space,this algorithm can solve the problem of signal recognition using the autocorrelation function.Wavelet denoising processing is introduced into the signal to be tested,and the denoised signal is converted to the VG domain.Then,the signal detection is performed by using the constant false alarm of the VG average degree.Next,weight the converted graph.Finally,perform feature extraction on the weighted image,and use the feature to complete the recognition.It is testified that the proposed algorithm offers significant improvements,such as robustness to noise,and the detection and recognition accuracy,over the recent researches.
基金supported by the National Natural Science Foundation of China(7190121061973310).
文摘Solar arrays are important and indispensable parts of spacecraft and provide energy support for spacecraft to operate in orbit and complete on-orbit missions.When a spacecraft is in orbit,because the solar array is exposed to the harsh space environment,with increasing working time,the performance of its internal electronic components gradually degrade until abnormal damage occurs.This damage makes solar array power generation unable to fully meet the energy demand of a spacecraft.Therefore,timely and accurate detection of solar array anomalies is of great significance for the on-orbit operation and maintenance management of spacecraft.In this paper,we propose an anomaly detection method for spacecraft solar arrays based on the integrated least squares support vector machine(ILS-SVM)model:it selects correlated telemetry data from spacecraft solar arrays to form a training set and extracts n groups of training subsets from this set,then gets n corresponding least squares support vector machine(LS-SVM)submodels by training on these training subsets,respectively;after that,the ILS-SVM model is obtained by integrating these submodels through a weighting operation to increase the prediction accuracy and so on;finally,based on the obtained ILS-SVM model,a parameterfree and unsupervised anomaly determination method is proposed to detect the health status of solar arrays.We use the telemetry data set from a satellite in orbit to carry out experimental verification and find that the proposed method can diagnose solar array anomalies in time and can capture the signs before a solar array anomaly occurs,which reflects the applicability of the method.
基金Supported by Henan Institute of Science and Technology (055031)
文摘A detecting method based on machine vision was put forward to test the performance of seedmeter with corn and soybean seeds as test samples,in which MATLAB software was applied to process image data and analyze the results.The experimental results showed that the mean value of absolute error of the sowing speed for soybean was 0.004-0.68 seed ? s-1;the mean value of relative error was from 6.5% to 130%,and there were no significant differences of mean value,standard deviation and coefficient of variation of flowing seeds between manual statistics and MATLAB statistics.The machine vision method was proved to be time-saving,labor-saving and no-touching in the seedmeter precision detecting.
基金supported by the National Natural Science Foundation of China(6107113961471019+5 种基金61171122)the Aeronautical Science Foundation of China(20142051022)the Foundation of ATR Key Lab(C80264)the National Natural Science Foundation of China(NNSFC)under the RSE-NNSFC Joint Project(2012-2014)(61211130210)with Beihang Universitythe RSE-NNSFC Joint Project(2012-2014)(61211130309)with Anhui Universitythe"Sino-UK Higher Education Research Partnership for Ph D Studies"Joint Project(2013-2015)
文摘Current research on target detection and recognition from synthetic aperture radar (SAR) images is usually carried out separately. It is difficult to verify the ability of a target recognition algorithm for adapting to changes in the environment. To realize the whole process of SAR automatic target recognition (ATR), es- pecially for the detection and recognition of vehicles, an algorithm based on kernel fisher discdminant analysis (KFDA) is proposed. First, in order to make a better description of the difference be- tween the background and the target, KFDA is extended to the detection part. Image samples are obtained with a dual-window approach and features of the inner and outer window samples are extracted by using KFDA. The difference between the features of inner and outer window samples is compared with a threshold to determine whether a vehicle exists. Second, for the target area, we propose an improved KFDA-IMED (image Euclidean distance) combined with a support vector machine (SVM) to recognize the vehicles. Experimental results validate the performance of our method. On the detection task, our proposed method obtains not only a high detection rate but also a low false alarm rate without using any prior information. For the recognition task, our method overcomes the SAR image aspect angle sensitivity, reduces the requirements for image preprocessing and improves the recogni- tion rate.