Due to the development of the novel materials,the past two decades have witnessed the rapid advances of soft electronics.The soft electronics have huge potential in the physical sign monitoring and health care.One of ...Due to the development of the novel materials,the past two decades have witnessed the rapid advances of soft electronics.The soft electronics have huge potential in the physical sign monitoring and health care.One of the important advantages of soft electronics is forming good interface with skin,which can increase the user scale and improve the signal quality.Therefore,it is easy to build the specific dataset,which is important to improve the performance of machine learning algorithm.At the same time,with the assistance of machine learning algorithm,the soft electronics have become more and more intelligent to realize real-time analysis and diagnosis.The soft electronics and machining learning algorithms complement each other very well.It is indubitable that the soft electronics will bring us to a healthier and more intelligent world in the near future.Therefore,in this review,we will give a careful introduction about the new soft material,physiological signal detected by soft devices,and the soft devices assisted by machine learning algorithm.Some soft materials will be discussed such as two-dimensional material,carbon nanotube,nanowire,nanomesh,and hydrogel.Then,soft sensors will be discussed according to the physiological signal types(pulse,respiration,human motion,intraocular pressure,phonation,etc.).After that,the soft electronics assisted by various algorithms will be reviewed,including some classical algorithms and powerful neural network algorithms.Especially,the soft device assisted by neural network will be introduced carefully.Finally,the outlook,challenge,and conclusion of soft system powered by machine learning algorithm will be discussed.展开更多
Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors c...Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors consume less power,but lack the capability to resolve static stimuli.Here,we address this issue by utilizing the unique polarization chemistry of conjugated polymers for the first time and propose a new type of bioinspired,passive,and bio-friendly tactile sensors for resolving both static and dynamic stimuli.Specifically,to emulate the polarization process of natural sensory cells,conjugated polymers(including poly(3,4-ethylenedioxythiophen e):poly(styrenesulfonate),polyaniline,or polypyrrole)are controllably polarized into two opposite states to create artificial potential differences.The controllable and reversible polarization process of the conjugated polymers is fully in situ characterized.Then,a micro-structured ionic electrolyte is employed to imitate the natural ion channels and to encode external touch stimulations into the variation in potential difference outputs.Compared with the currently existing tactile sensing devices,the developed tactile sensors feature distinct characteristics including fully organic composition,high sensitivity(up to 773 mV N^(−1)),ultralow power consumption(nW),as well as superior bio-friendliness.As demonstrations,both single point tactile perception(surface texture perception and material property perception)and two-dimensional tactile recognitions(shape or profile perception)with high accuracy are successfully realized using self-defined machine learning algorithms.This tactile sensing concept innovation based on the polarization chemistry of conjugated polymers opens up a new path to create robotic tactile sensors and prosthetic electronic skins.展开更多
Humans can perceive our complex world through multi-sensory fusion.Under limited visual conditions,people can sense a variety of tactile signals to identify objects accurately and rapidly.However,replicating this uniq...Humans can perceive our complex world through multi-sensory fusion.Under limited visual conditions,people can sense a variety of tactile signals to identify objects accurately and rapidly.However,replicating this unique capability in robots remains a significant challenge.Here,we present a new form of ultralight multifunctional tactile nano-layered carbon aerogel sensor that provides pressure,temperature,material recognition and 3D location capabilities,which is combined with multimodal supervised learning algorithms for object recognition.The sensor exhibits human-like pressure(0.04–100 kPa)and temperature(21.5–66.2℃)detection,millisecond response times(11 ms),a pressure sensitivity of 92.22 kPa^(−1)and triboelectric durability of over 6000 cycles.The devised algorithm has universality and can accommodate a range of application scenarios.The tactile system can identify common foods in a kitchen scene with 94.63%accuracy and explore the topographic and geomorphic features of a Mars scene with 100%accuracy.This sensing approach empowers robots with versatile tactile perception to advance future society toward heightened sensing,recognition and intelligence.展开更多
Determining climatic and physiographic variables in Mexico’s major ecoregions that are limiting to biodiversity and species of high conservation concern is essential for their conservation.Yet,at the national level t...Determining climatic and physiographic variables in Mexico’s major ecoregions that are limiting to biodiversity and species of high conservation concern is essential for their conservation.Yet,at the national level to date,few studies have been performed with large data sets and crossconfirmation using multiple statistical analyses.Here,we used 25 endemic,rare and endangered species from 3610 sampling points throughout Mexico and 25 environmental attributes,including average precipitation for different seasons of the year,annual dryness index,slope of the terrain;and maximum,minimum and average temperatures to test our hypothesis that these species could be assessed with the same weight among all variables,showing similar indices of importance.Our results using principal component analysis,covariation analysis by permutations,and random forest regression showed that summer precipitation,length of the frost-free period,spring precipitation,winter precipitation and growing season precipitation all strongly influence the abundance of tropical species.In contrast,annual precipitation and the balance at different seasons(summer and growing season)were the most relevant variables on the temperate region species.For dry areas,the minimum temperature of the coldest month and the maximum temperature of the warmest month were the most significant variables.Using these different associations in different climatic regions could support a more precise management and conservation plan for the preservation of plant species diversity in forests under different global warming scenarios.展开更多
Slope stability prediction research is a complex non-linear system problem.In carrying out slope stability prediction work,it often encounters low accuracy of prediction models and blind data preprocessing.Based on 77...Slope stability prediction research is a complex non-linear system problem.In carrying out slope stability prediction work,it often encounters low accuracy of prediction models and blind data preprocessing.Based on 77 field cases,5 quantitative indicators are selected to improve the accuracy of prediction models for slope stability.These indicators include slope angle,slope height,internal friction angle,cohesion and unit weight of rock and soil.Potential data aggregation in the prediction of slope stability is analyzed and visualized based on Six-dimension reduction methods,namely principal components analysis(PCA),Kernel PCA,factor analysis(FA),independent component analysis(ICA),non-negative matrix factorization(NMF)and t-SNE(stochastic neighbor embedding).Combined with classic machine learning methods,7 prediction models for slope stability are established and their reliabilities are examined by random cross validation.Besides,the significance of each indicator in the prediction of slope stability is discussed using the coefficient of variation method.The research results show that dimension reduction is unnecessary for the data processing of prediction models established in this paper of slope stability.Random forest(RF),support vector machine(SVM)and k-nearest neighbour(KNN)achieve the best prediction accuracy,which is higher than 90%.The decision tree(DT)has better accuracy which is 86%.The most important factor influencing slope stability is slope height,while unit weight of rock and soil is the least significant.RF and SVM models have the best accuracy and superiority in slope stability prediction.The results provide a new approach toward slope stability prediction in geotechnical engineering.展开更多
基金supported by National Natural Science Foundation of China(No.62201624,32000939,21775168,22174167,51861145202,U20A20168)the Guangdong Basic and Applied Basic Research Foundation(2019A1515111183)+3 种基金Shenzhen Research Funding Program(JCYJ20190807160401657,JCYJ201908073000608,JCYJ20150831192224146)the National Key R&D Program(2018YFC2001202)the support of the Research Fund from Tsinghua University Initiative Scientific Research Programthe support from Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province(No.2020B1212060077)。
文摘Due to the development of the novel materials,the past two decades have witnessed the rapid advances of soft electronics.The soft electronics have huge potential in the physical sign monitoring and health care.One of the important advantages of soft electronics is forming good interface with skin,which can increase the user scale and improve the signal quality.Therefore,it is easy to build the specific dataset,which is important to improve the performance of machine learning algorithm.At the same time,with the assistance of machine learning algorithm,the soft electronics have become more and more intelligent to realize real-time analysis and diagnosis.The soft electronics and machining learning algorithms complement each other very well.It is indubitable that the soft electronics will bring us to a healthier and more intelligent world in the near future.Therefore,in this review,we will give a careful introduction about the new soft material,physiological signal detected by soft devices,and the soft devices assisted by machine learning algorithm.Some soft materials will be discussed such as two-dimensional material,carbon nanotube,nanowire,nanomesh,and hydrogel.Then,soft sensors will be discussed according to the physiological signal types(pulse,respiration,human motion,intraocular pressure,phonation,etc.).After that,the soft electronics assisted by various algorithms will be reviewed,including some classical algorithms and powerful neural network algorithms.Especially,the soft device assisted by neural network will be introduced carefully.Finally,the outlook,challenge,and conclusion of soft system powered by machine learning algorithm will be discussed.
基金financially supported by the Sichuan Science and Technology Program(2022YFS0025 and 2024YFFK0133)supported by the“Fundamental Research Funds for the Central Universities of China.”。
文摘Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors consume less power,but lack the capability to resolve static stimuli.Here,we address this issue by utilizing the unique polarization chemistry of conjugated polymers for the first time and propose a new type of bioinspired,passive,and bio-friendly tactile sensors for resolving both static and dynamic stimuli.Specifically,to emulate the polarization process of natural sensory cells,conjugated polymers(including poly(3,4-ethylenedioxythiophen e):poly(styrenesulfonate),polyaniline,or polypyrrole)are controllably polarized into two opposite states to create artificial potential differences.The controllable and reversible polarization process of the conjugated polymers is fully in situ characterized.Then,a micro-structured ionic electrolyte is employed to imitate the natural ion channels and to encode external touch stimulations into the variation in potential difference outputs.Compared with the currently existing tactile sensing devices,the developed tactile sensors feature distinct characteristics including fully organic composition,high sensitivity(up to 773 mV N^(−1)),ultralow power consumption(nW),as well as superior bio-friendliness.As demonstrations,both single point tactile perception(surface texture perception and material property perception)and two-dimensional tactile recognitions(shape or profile perception)with high accuracy are successfully realized using self-defined machine learning algorithms.This tactile sensing concept innovation based on the polarization chemistry of conjugated polymers opens up a new path to create robotic tactile sensors and prosthetic electronic skins.
基金the National Natural Science Foundation of China(Grant No.52072041)the Beijing Natural Science Foundation(Grant No.JQ21007)+2 种基金the University of Chinese Academy of Sciences(Grant No.Y8540XX2D2)the Robotics Rhino-Bird Focused Research Project(No.2020-01-002)the Tencent Robotics X Laboratory.
文摘Humans can perceive our complex world through multi-sensory fusion.Under limited visual conditions,people can sense a variety of tactile signals to identify objects accurately and rapidly.However,replicating this unique capability in robots remains a significant challenge.Here,we present a new form of ultralight multifunctional tactile nano-layered carbon aerogel sensor that provides pressure,temperature,material recognition and 3D location capabilities,which is combined with multimodal supervised learning algorithms for object recognition.The sensor exhibits human-like pressure(0.04–100 kPa)and temperature(21.5–66.2℃)detection,millisecond response times(11 ms),a pressure sensitivity of 92.22 kPa^(−1)and triboelectric durability of over 6000 cycles.The devised algorithm has universality and can accommodate a range of application scenarios.The tactile system can identify common foods in a kitchen scene with 94.63%accuracy and explore the topographic and geomorphic features of a Mars scene with 100%accuracy.This sensing approach empowers robots with versatile tactile perception to advance future society toward heightened sensing,recognition and intelligence.
基金the National Council of Science and Technology of Mexico for the postdoc fellowship awarded。
文摘Determining climatic and physiographic variables in Mexico’s major ecoregions that are limiting to biodiversity and species of high conservation concern is essential for their conservation.Yet,at the national level to date,few studies have been performed with large data sets and crossconfirmation using multiple statistical analyses.Here,we used 25 endemic,rare and endangered species from 3610 sampling points throughout Mexico and 25 environmental attributes,including average precipitation for different seasons of the year,annual dryness index,slope of the terrain;and maximum,minimum and average temperatures to test our hypothesis that these species could be assessed with the same weight among all variables,showing similar indices of importance.Our results using principal component analysis,covariation analysis by permutations,and random forest regression showed that summer precipitation,length of the frost-free period,spring precipitation,winter precipitation and growing season precipitation all strongly influence the abundance of tropical species.In contrast,annual precipitation and the balance at different seasons(summer and growing season)were the most relevant variables on the temperate region species.For dry areas,the minimum temperature of the coldest month and the maximum temperature of the warmest month were the most significant variables.Using these different associations in different climatic regions could support a more precise management and conservation plan for the preservation of plant species diversity in forests under different global warming scenarios.
基金by the National Natural Science Foundation of China(No.52174114)the State Key Laboratory of Hydroscience and Engineering of Tsinghua University(No.61010101218).
文摘Slope stability prediction research is a complex non-linear system problem.In carrying out slope stability prediction work,it often encounters low accuracy of prediction models and blind data preprocessing.Based on 77 field cases,5 quantitative indicators are selected to improve the accuracy of prediction models for slope stability.These indicators include slope angle,slope height,internal friction angle,cohesion and unit weight of rock and soil.Potential data aggregation in the prediction of slope stability is analyzed and visualized based on Six-dimension reduction methods,namely principal components analysis(PCA),Kernel PCA,factor analysis(FA),independent component analysis(ICA),non-negative matrix factorization(NMF)and t-SNE(stochastic neighbor embedding).Combined with classic machine learning methods,7 prediction models for slope stability are established and their reliabilities are examined by random cross validation.Besides,the significance of each indicator in the prediction of slope stability is discussed using the coefficient of variation method.The research results show that dimension reduction is unnecessary for the data processing of prediction models established in this paper of slope stability.Random forest(RF),support vector machine(SVM)and k-nearest neighbour(KNN)achieve the best prediction accuracy,which is higher than 90%.The decision tree(DT)has better accuracy which is 86%.The most important factor influencing slope stability is slope height,while unit weight of rock and soil is the least significant.RF and SVM models have the best accuracy and superiority in slope stability prediction.The results provide a new approach toward slope stability prediction in geotechnical engineering.