To overcome the limitations of traditional experimental“trial and error”methods in lubricant additive design,a new molecular design method based on molecular structure parameters is established here.The molecular me...To overcome the limitations of traditional experimental“trial and error”methods in lubricant additive design,a new molecular design method based on molecular structure parameters is established here.The molecular mechanism of the antioxidant reaction of hindered phenol,diphenylamine,and alkyl sulfide are studied via molecular simulations.Calculation results show that the strong electron-donating ability and high hydrogen-donating activity of the antioxidant molecule and the low hydrogen-abstracting activity of free radicals formed after dehydrogenation are the internal molecular causes of the shielding of phenol and diphenylamine from scavenging peroxy free radicals,and the strong electron-donating ability is the internal molecular cause of the high activity of thioether in decomposing alkyl hydrogen peroxide.Based on this antioxidant molecular mechanism,a molecular design rule of antioxidant is proposed,namely“high EHOMO,large Q(S),low bond dissociation energy BDE(O—H)and BDE(N—H)”.Two new antioxidants,PAS-I and PAS-II,are designed and prepared by chemical bonding of hindered phenol,diphenylamine,and sulfur atoms.Experimental results show that these antioxidants both have excellent antioxidant effects in lubricating oil,and that PAS-II is the superior antioxidant,consistent with theoretical predictions.展开更多
To address the problem of identifying multiple types of additives in lubricating oil,a method based on midinfrared spectral band selection using the eXtreme Gradient Boosting(XGBoost)algorithm combined with the ant co...To address the problem of identifying multiple types of additives in lubricating oil,a method based on midinfrared spectral band selection using the eXtreme Gradient Boosting(XGBoost)algorithm combined with the ant colony optimization(ACO)algorithm is proposed.The XGBoost algorithm was used to train and test three additives,T534(alkyl diphenylamine),T308(isooctyl acid thiophospholipid octadecylamine),and T306(trimethylphenol phosphate),separately,in order to screen for the optimal combination of spectral bands for each additive.The ACO algorithm was used to optimize the parameters of the XGBoost algorithm to improve the identification accuracy.During this process,the support vector machine(SVM)and hybrid bat algorithms(HBA)were included as a comparison,generating four models:ACO-XGBoost,ACO-SVM,HBA-XGboost,and HBA-SVM.The results showed that all four models could identify the three additives efficiently,with the ACO-XGBoost model achieving 100%recognition of all three additives.In addition,the generalizability of the ACO-XGBoost model was further demonstrated by predicting a lubricating oil containing the three additives prepared in our laboratory and a collected sample of commercial oil currently in use。展开更多
In order to enhance the tribological properties of lubricating oil, suitable surfactants such as Tween-20, Tween-60, Span-20 and Sodium sodecylbenzenesulfonate were selected and lubricating oils containing CeO2 and Ti...In order to enhance the tribological properties of lubricating oil, suitable surfactants such as Tween-20, Tween-60, Span-20 and Sodium sodecylbenzenesulfonate were selected and lubricating oils containing CeO2 and TiO2 nanoparticles were prepared. The morphology and size of CeO2 and TiO2 nanoparticles were examined with a transmission electron microscope (TEM). The tribological properties of the oils were tested using an MRS-1J four-ball tribotester. The research results show that when the proportion by weight of CeO2 nanoparticles to TiO2 nanoparticles is 1:3, and the total weight fraction is 0.6%, the lubricating oil has optimal anti-wear and friction reducing properties. The addition of CeO2 nanoparticles reduces the required amount of TiO2 nanoparticles.展开更多
The inspection of engine lubricating oil can give an indication of the internal condition of an engine. By means of the Object-Oriented Programming (OOP), an expert system is developed in this paper to computerize the...The inspection of engine lubricating oil can give an indication of the internal condition of an engine. By means of the Object-Oriented Programming (OOP), an expert system is developed in this paper to computerize the inspection. The traditional components of an expert system, such us knowledge base, inference engine and user interface are reconstructed and integrated, based on the Microsoft Foundation Class (MFC) library. To testify the expert system, an inspection example is given at the end of this paper.展开更多
The friction and wear characteristics of lauroyl glutamine, lauroyl glycine and lauroyl alanine, used as green additives in HVI 350 mineral lubricating oil, were evaluated on a four-ball tribotester. The morphologies ...The friction and wear characteristics of lauroyl glutamine, lauroyl glycine and lauroyl alanine, used as green additives in HVI 350 mineral lubricating oil, were evaluated on a four-ball tribotester. The morphologies and chemical species of the worn surfaces were analyzed by scanning electron microscope (SEM) and X-ray photoelectron spectroscope (XPS), respectively. The test results indicated that the three fatty acyl amino acids could effectively improve the anti-wear and friction-reducing abilities of the HVI 350 mineral oil. The improvement in anti-wear and friction-reducing abilities of the mineral oil by the related amino acids was mainly ascribed to the formation of a composite boundary lubrication film due to the adsorption of amino acids on the friction surfaces.展开更多
Lubricating oils are usually produced by solvent extraction to separate aromatics in order to achieve the desired specifications and better quality products.Among the different properties of lubricating oils,density a...Lubricating oils are usually produced by solvent extraction to separate aromatics in order to achieve the desired specifications and better quality products.Among the different properties of lubricating oils,density and refractive index are some of the most important properties which can both be used for petroleum fluid characterization.Predictions of density and refractive index for naphthenic oils during solvent extraction by DMSO obtained by the pseudo-component approach and the quadratic correlation were both examined.The pseudo-component approach is a method to predict density and refractive index from composition while the latter merely relates density to refractive index.Results indicated that the predictions yielded by the pseudo-component method were in good agreement with experimental data for naphthenic oils.And the use of a function of refractive index(FRI_(20))as a pseudo-component property remarkably improved n_(20)predictions for the naphthenic mixtures.However,the density and refractive index predictions obtained by the quadratic correlation exhibited significantly higher de-viations for naphthenic oils than those for paraffinic oils.Thus a new modified correlation of the same functional form was proposed for naphthenic oils.The modification significantly improved predictions for naphthenic oils,which presented similar accuracy as the pseudo-component approach.And the previous correlation was still used for paraffinic oils.Additionally,effect of temperature on density and refractive index of naphthenic oils was examined.Results showed that the modified quadratic correlation was accurate for describing the relationship between density and refractive index of naphthenic oils at 20-90℃.The temperature dependence of density and refractive index for the raffinates and the extracts could be accurately described by the thermal coefficients for saturates and aromatics,respectively.Regarding the refractive index variation of the extracts with temperature,the empirical equation was proved to be a better option compared with the method using the thermal coefficient for aromatics.展开更多
To meet the requirements for high aromatic content and low polycyclic aromatic(PCA)concentration,eco-friendly aromatic-rich rubber extender oils are usually produced by two-stage solvent extraction processes with furf...To meet the requirements for high aromatic content and low polycyclic aromatic(PCA)concentration,eco-friendly aromatic-rich rubber extender oils are usually produced by two-stage solvent extraction processes with furfural.Among the different properties of rubber processing oils,density and refractive index are some of the most important properties related to their final quality.Two types of methods,including a pseudo-component approach by using mixing rules and several correlations,were used for calculation of density and refractive index at 20℃ of paraffinic furfural-extract oils and their secondary raffinates.Results indicated that similar accuracy was obtained for predicting the density and the refractive index of furfural+furfural-extract paraffinic oil systems.However,the quadratic correlation presents its advantage over the pseudo-component approach when the composition of oils is not available.Moreover,the quadratic correlation was also used for naphthenic lubricating oils during two-stage solvent extraction processes.The predictions showed much larger discrepancies with respect to experimental values than those of paraffinic lubricating oils,which indicated that the quadratic correlation was more suitable for paraffinic oils with a CN value of below 37%.展开更多
Low-temperature viscosity of lube oils mixed with paraffinic base oil and naphthenic base oil at different mass ratios has been tested by experiments. The influence of paraffinic base oil on the performance of naphthe...Low-temperature viscosity of lube oils mixed with paraffinic base oil and naphthenic base oil at different mass ratios has been tested by experiments. The influence of paraffinic base oil on the performance of naphthenic base oil was investigated by studying the low-temperature viscosity of tested oils. The viscosity of lube oils increased with an increasing content of high-viscosity paraffinic base oil in the oil mixture. And the low-temperature viscosity was less influenced when the content of paraffinic base oil in the mixture was insignificant. In order to reduce the cost for formulating lubricating oil, a small fraction of paraffinic base oil can be added into naphthenic base oil as far as the property of lubricating oil can meet the specification. According to the study on low-temperature viscosity of the oil mixed with paraffinic base oil and naphthenic base oil, a basic rule was worked out for the preparation of qualified lubricating oils.展开更多
The factors affecting the developmcnt of Sinopec lubricating oil were analyzed in this paper, and an analytic hierarchy process (AHP) model for selecting lubricating-oil producing bases was developed. By using this ...The factors affecting the developmcnt of Sinopec lubricating oil were analyzed in this paper, and an analytic hierarchy process (AHP) model for selecting lubricating-oil producing bases was developed. By using this model, nine lubricating oil producing companies under Sinopec were comprehensively evaluated. The evaluation result showed that the Maoming Lubricating Oil Company (Guangdong province), Jingmen Lubricating Oil Company (Hubei province) and Changcheng Lube Oil Company (Beijing) are top three choices, and should be developed preferentially for the development of Sinopec producing bases of lubricating oil in the future. The conclusions provide the theoretical basis for selecting lubricating oil producing bases for decision makers.展开更多
In order to provide a new way for waste cooking oil(WCO) resource utilization, several diester derivatives were obtained from WCO through a three-step chemical modifications, viz.: transesterification, epoxidation and...In order to provide a new way for waste cooking oil(WCO) resource utilization, several diester derivatives were obtained from WCO through a three-step chemical modifications, viz.: transesterification, epoxidation and oxirane ring opening with carboxylic acids. The effects of the chain length of side chain groups on the viscosity, acid value, low temperature fluidity, thermo-oxidative stability, tribological properties and surface tension of diester derivatives were investigated. The results showed that increasing the chain length of side chain groups had a positive influence on the viscosity, viscosity index, acid value, pour point, friction coefficient and wear scar diameter along with a negative influence on the oxidation onset temperature, volatile loss, insoluble deposit, maximum non-seizure load and surface tension. These diester derivatives exhibited improved physicochemical and tribological properties that make themselves promising environmentally friendly biolubricant basestocks.展开更多
The friction coefficients between the surfaces of a ball and a disc lubricated by a space lubricating oil No.4129 were measured at various operating conditions on a ball-disc friction test rig. Friction characteristic...The friction coefficients between the surfaces of a ball and a disc lubricated by a space lubricating oil No.4129 were measured at various operating conditions on a ball-disc friction test rig. Friction characteristic curves were obtained under sliding and rolling movements at point contact. A new model for calculation of the friction coefficient was presented. The results show that the bigger the load is, the larger the friction coefficient becomes. The rolling speed ranging from 1 m/s to10 m/s has an important effect on the friction coefficient. The friction coefficient increases with the increase in sliding speed and the decrease in rolling speed. The linear variation region of the friction coefficient versus the sliding speed at high rolling speed is wider than that at low rolling speed. The model for calculation of the friction coefficient is accurate for engineering use.展开更多
The production of poly-α-olefins(PAOs)has attracted attention due to their excellent viscosity-temperature dependence,wear characteristics,oxidative properties,and high thermal stability.In this study,indene extracte...The production of poly-α-olefins(PAOs)has attracted attention due to their excellent viscosity-temperature dependence,wear characteristics,oxidative properties,and high thermal stability.In this study,indene extracted during coal tar refining was used as a raw material to synthesize a bis(indenyl)zirconium dichloride metallocene catalyst.A PAO with low viscosity and a high viscosity index was produced via the oligomerization of 1-decene in the presence of both the prepared metallocene and a methylaluminoxane(MAO)co-catalyst.Notably,the effects of different synthesis reaction parameters,such as Al:Zr ratio,amount of catalyst,and reaction temperature,on the conversion ratio and product selectivity were investigated in detail.The produced PAO was thoroughly characterized using Fourier-transform infrared,^(13)C,and^(1)H nuclear magnetic resonance spectroscopies;gas chromatography;and viscosity measurements.At 70℃,the metallocene catalyst created more stable active sites.In addition,the alkylation effect of MAO was noticeable.Interestingly,the obtained catalysis results demonstrated that a high conversion ratio of~93%was achieved at a low reaction temperature of 70℃,with a catalyst dosage of 0.0848 mmol and Al:Zr ratio of 8.48mmol:0.0848mmol.Moreover,under these optimal conditions,the kinematic viscosity of PAO was 4.25 mm2/s at 100℃,and the viscosity index was 139,indicating good viscosity-temperature properties.展开更多
This study analyzed the pyrolysis mechanism,developed a pyrolysis kinetic model,and determined the corresponding thermodynamic parameters for the removal of calcium from used lubricating oil using sulfurized calcium a...This study analyzed the pyrolysis mechanism,developed a pyrolysis kinetic model,and determined the corresponding thermodynamic parameters for the removal of calcium from used lubricating oil using sulfurized calcium alkyl phenolate(T-115B)as a model compound.The pyrolysis process and products were evaluated by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy.Visual inspection indicated that the removal of calcium from T-115B depended primarily on the destruction of micelles caused by the pyrolysis of compounds at high temperatures.The pyrolysis characteristics of T-115B at different heating rates were investigated by thermogravimetry and differential thermal analysis,which revealed two distinct pyrolysis phases.Thus,the pyrolysis mechanism can be described by a twostep model.The activation energy and thermodynamic parameters(ΔH,ΔG,andΔS)were determined by applying the Kissinger-Akahira-Sunose,Flynn-Wall-Ozawa,Friedman,and Starink methods;the average activation energies for T-115B pyrolysis obtained using these methods were 115.80,119.84,124.96,and 116.14 kJ/mol,respectively.Further,both stages of the pyrolysis reaction followed Fn mechanisms with n=1.39 in the first stage and n=0.86 in the second stage.This study provides reliable and effective pyrolysis models along with kinetic and thermodynamic parameters to facilitate the largescale industrial application of used lubricating oil.展开更多
The traction behavior of space lubricating oil No. 4116 was measured and analyzed at various oil inlet temperatures below 0 ℃ and various rolling speeds under normal loads by a test rig simulating the operating condi...The traction behavior of space lubricating oil No. 4116 was measured and analyzed at various oil inlet temperatures below 0 ℃ and various rolling speeds under normal loads by a test rig simulating the operating conditions of space bearings. A traction coefficient calculation model was presented. The rheological property and rheological parameters of the lubricant at a low oil inlet temperature were analyzed based on the Tevaarwerk-Johnson model. The results showed that the lubricating oil No. 4116 was sensitive to the rolling speed and had lower sensitivity to the normal load. This lubricating oil is more suitable for applications under high speed when it is used below 0 ℃. It behaves as an elastic-plastic fluid operating below 0 ℃. Both the average limiting shear stress and the average elastic shear modulus have a negative correlation with the rolling speed and oil inlet temperature and have a positive correlation with the normal load.展开更多
Solvent extraction is the process of separating aromatics from vacuum distillates for the production oflubricating base oils. In this study, the authors use dimethyl sulfoxide (DMSO) instead of furfural as solvent, in...Solvent extraction is the process of separating aromatics from vacuum distillates for the production oflubricating base oils. In this study, the authors use dimethyl sulfoxide (DMSO) instead of furfural as solvent, in light of itshigher selectivity, to obtain extracts with a high aromatic content for naphthenic lubricating base oils. We systematicallyinvestigated effects of the solvent-to-oil (S/O) ratio and extraction temperature on the yield of the extract, efficiency ofaromatic removal, and composition of the extracts and raffinates. The results showed that the aromatic content of extractsfor naphthenic oils could reach a high value of about 80%. The solvent maintained a high selectivity for aromatics fornaphthenic oils even under a high S/O ratio and a high extraction temperature. Moreover, the efficiency of aromatic removalfor naphthenic lubricating base oils could be enhanced by increasing either the S/O ratio or the extraction temperature,although these measures had limited effects in practice. Following this, we used the non-random two-liquid (NRTL) modelbased on the pseudo-component approach to simulate the liquid-liquid equilibrium of the system of DMSO + naphtheniclubricating base oils, and determined the parameters of binary interaction through regression based on the data on phaseequilibrium. The modeling results showed that the predicted yield, content of the solvent, and composition of the raffinatesand extracts were in good agreement with those obtained in the experiments. This validates the reliability of the model usedto represent the DMSO + naphthenic lubricating base oil system. Both the experimental data and the method of simulationreported here can help optimize the extraction of naphthenic lubricating base oils, and provide a better understanding of thecorresponding process.展开更多
As an alternative to petroleum-based lubricants, which are harmful to the environment in excessive amounts, a biodegradable multiester derivative(OFANE) was obtained from plant oil through a chemical modification proc...As an alternative to petroleum-based lubricants, which are harmful to the environment in excessive amounts, a biodegradable multiester derivative(OFANE) was obtained from plant oil through a chemical modification process with four steps as follows: hydrolysis, esterification, epoxidation, and ring-opening reaction. The physical and chemical properties of OFANE, such as viscosity, acid value, pour point, evaporation loss, and oxidation induction time were measured. Results showed that OFANE had good low-temperature fluidity, thermal-oxidative stability, and tribological properties. The tribological properties of OFANE with dimeric acid additive were evaluated. The final biodegradation experiment indicated that OFANE had excellent biodegradability. The prepared OFANE showed great potential as substitute for petroleum-based lubricating base oils.展开更多
Due to increasingly stricter emissions on particulate matter(PM)emissions,diesel particulate filter(DPF)regeneration has become the most widely used and effective technology to reduce PM emissions.However,using incyli...Due to increasingly stricter emissions on particulate matter(PM)emissions,diesel particulate filter(DPF)regeneration has become the most widely used and effective technology to reduce PM emissions.However,using incylinder post-injection-based active DPF regeneration can increase engine oil dilution,thus affecting engine lubrication.Using a 4-cylinder turbocharged direct-injection diesel engine,this study analyzed the effect of lubricating oil on the formation and properties of turbocharger compressor soot deposits associated with engine oil dilution.Three diesel engine lubricating oils(CJ-4,CK-4,and CJ-4*)were selected,with each subjected to 200 hours of engine bench testing at 8%oil dilution.The composition of CJ-4*was the same as that of CJ-4 but with reduced amount of additives.Soot deposits were collected and analyzed.A merit calculation method was established to rate turbocharger deposits.Transmission electron microscopy,Raman spectroscopy,Fourier transform infrared spectroscopy,and thermogravimetric analysis(TGA)were used to characterize the morphology and composition of soot samples.The results showed that turbocharger deposits from CJ-4 and CK-4 were less than that from CJ-4*.The deposits from CJ-4*showed a more disordered morphology,whereas those from CJ-4 and CK-4 exhibited a higher degree of order.TGA results showed that the soluble organic fraction content in the deposit derived from CJ-4*was much higher than that obtained from CJ-4 and CK-4.展开更多
Polymerization of mixed alpha-olefins originating from the Fischer-Tropsch synthesis catalyzed by theBu)_3/[Me_2NHPh]^+[B(C_6F_5)_4]^-,was studied.The effects of the Zr/olefin mole ratio,Al/Zr mole ratio,reaction temp...Polymerization of mixed alpha-olefins originating from the Fischer-Tropsch synthesis catalyzed by theBu)_3/[Me_2NHPh]^+[B(C_6F_5)_4]^-,was studied.The effects of the Zr/olefin mole ratio,Al/Zr mole ratio,reaction temperature,and reaction time on the viscosity and molecular weight of the product were investigated.The conversion under optimized conditions reached 97.3%.The product structure was characterized by ^(13)C NMR spectrometry and ~1H NMR spectrometry,and the conversion of olefins with different carbon numbers under different conditions was determined by GC analysis.The polymer obtained under optimized conditions has a high viscosity index of 262 with a narrow molecular weight distribution of 1.95,which is a desired component for lubricating base oil.展开更多
文摘To overcome the limitations of traditional experimental“trial and error”methods in lubricant additive design,a new molecular design method based on molecular structure parameters is established here.The molecular mechanism of the antioxidant reaction of hindered phenol,diphenylamine,and alkyl sulfide are studied via molecular simulations.Calculation results show that the strong electron-donating ability and high hydrogen-donating activity of the antioxidant molecule and the low hydrogen-abstracting activity of free radicals formed after dehydrogenation are the internal molecular causes of the shielding of phenol and diphenylamine from scavenging peroxy free radicals,and the strong electron-donating ability is the internal molecular cause of the high activity of thioether in decomposing alkyl hydrogen peroxide.Based on this antioxidant molecular mechanism,a molecular design rule of antioxidant is proposed,namely“high EHOMO,large Q(S),low bond dissociation energy BDE(O—H)and BDE(N—H)”.Two new antioxidants,PAS-I and PAS-II,are designed and prepared by chemical bonding of hindered phenol,diphenylamine,and sulfur atoms.Experimental results show that these antioxidants both have excellent antioxidant effects in lubricating oil,and that PAS-II is the superior antioxidant,consistent with theoretical predictions.
基金the Beijing Natural Science Foundation(Grant No.2232066)the Open Project Foundation of State Key Laboratory of Solid Lubrication(Grant LSL-2212).
文摘To address the problem of identifying multiple types of additives in lubricating oil,a method based on midinfrared spectral band selection using the eXtreme Gradient Boosting(XGBoost)algorithm combined with the ant colony optimization(ACO)algorithm is proposed.The XGBoost algorithm was used to train and test three additives,T534(alkyl diphenylamine),T308(isooctyl acid thiophospholipid octadecylamine),and T306(trimethylphenol phosphate),separately,in order to screen for the optimal combination of spectral bands for each additive.The ACO algorithm was used to optimize the parameters of the XGBoost algorithm to improve the identification accuracy.During this process,the support vector machine(SVM)and hybrid bat algorithms(HBA)were included as a comparison,generating four models:ACO-XGBoost,ACO-SVM,HBA-XGboost,and HBA-SVM.The results showed that all four models could identify the three additives efficiently,with the ACO-XGBoost model achieving 100%recognition of all three additives.In addition,the generalizability of the ACO-XGBoost model was further demonstrated by predicting a lubricating oil containing the three additives prepared in our laboratory and a collected sample of commercial oil currently in use。
基金Supported by the Shanghai Municipal Education Commission(06FZ008)Shanghai Municipal Education Commission Key Disciplines(J50603)
文摘In order to enhance the tribological properties of lubricating oil, suitable surfactants such as Tween-20, Tween-60, Span-20 and Sodium sodecylbenzenesulfonate were selected and lubricating oils containing CeO2 and TiO2 nanoparticles were prepared. The morphology and size of CeO2 and TiO2 nanoparticles were examined with a transmission electron microscope (TEM). The tribological properties of the oils were tested using an MRS-1J four-ball tribotester. The research results show that when the proportion by weight of CeO2 nanoparticles to TiO2 nanoparticles is 1:3, and the total weight fraction is 0.6%, the lubricating oil has optimal anti-wear and friction reducing properties. The addition of CeO2 nanoparticles reduces the required amount of TiO2 nanoparticles.
文摘The inspection of engine lubricating oil can give an indication of the internal condition of an engine. By means of the Object-Oriented Programming (OOP), an expert system is developed in this paper to computerize the inspection. The traditional components of an expert system, such us knowledge base, inference engine and user interface are reconstructed and integrated, based on the Microsoft Foundation Class (MFC) library. To testify the expert system, an inspection example is given at the end of this paper.
基金the financial support from National Natural Science Foundation of China(project No.50975282)Chongqing Science Foundation for Outstanding Youth(project No. CSTC2008,BA4037)
文摘The friction and wear characteristics of lauroyl glutamine, lauroyl glycine and lauroyl alanine, used as green additives in HVI 350 mineral lubricating oil, were evaluated on a four-ball tribotester. The morphologies and chemical species of the worn surfaces were analyzed by scanning electron microscope (SEM) and X-ray photoelectron spectroscope (XPS), respectively. The test results indicated that the three fatty acyl amino acids could effectively improve the anti-wear and friction-reducing abilities of the HVI 350 mineral oil. The improvement in anti-wear and friction-reducing abilities of the mineral oil by the related amino acids was mainly ascribed to the formation of a composite boundary lubrication film due to the adsorption of amino acids on the friction surfaces.
基金sponsored by the Natural Science Foundation of Xinjiang Uygur Autonomous Region(No.2022D01F37).
文摘Lubricating oils are usually produced by solvent extraction to separate aromatics in order to achieve the desired specifications and better quality products.Among the different properties of lubricating oils,density and refractive index are some of the most important properties which can both be used for petroleum fluid characterization.Predictions of density and refractive index for naphthenic oils during solvent extraction by DMSO obtained by the pseudo-component approach and the quadratic correlation were both examined.The pseudo-component approach is a method to predict density and refractive index from composition while the latter merely relates density to refractive index.Results indicated that the predictions yielded by the pseudo-component method were in good agreement with experimental data for naphthenic oils.And the use of a function of refractive index(FRI_(20))as a pseudo-component property remarkably improved n_(20)predictions for the naphthenic mixtures.However,the density and refractive index predictions obtained by the quadratic correlation exhibited significantly higher de-viations for naphthenic oils than those for paraffinic oils.Thus a new modified correlation of the same functional form was proposed for naphthenic oils.The modification significantly improved predictions for naphthenic oils,which presented similar accuracy as the pseudo-component approach.And the previous correlation was still used for paraffinic oils.Additionally,effect of temperature on density and refractive index of naphthenic oils was examined.Results showed that the modified quadratic correlation was accurate for describing the relationship between density and refractive index of naphthenic oils at 20-90℃.The temperature dependence of density and refractive index for the raffinates and the extracts could be accurately described by the thermal coefficients for saturates and aromatics,respectively.Regarding the refractive index variation of the extracts with temperature,the empirical equation was proved to be a better option compared with the method using the thermal coefficient for aromatics.
文摘To meet the requirements for high aromatic content and low polycyclic aromatic(PCA)concentration,eco-friendly aromatic-rich rubber extender oils are usually produced by two-stage solvent extraction processes with furfural.Among the different properties of rubber processing oils,density and refractive index are some of the most important properties related to their final quality.Two types of methods,including a pseudo-component approach by using mixing rules and several correlations,were used for calculation of density and refractive index at 20℃ of paraffinic furfural-extract oils and their secondary raffinates.Results indicated that similar accuracy was obtained for predicting the density and the refractive index of furfural+furfural-extract paraffinic oil systems.However,the quadratic correlation presents its advantage over the pseudo-component approach when the composition of oils is not available.Moreover,the quadratic correlation was also used for naphthenic lubricating oils during two-stage solvent extraction processes.The predictions showed much larger discrepancies with respect to experimental values than those of paraffinic lubricating oils,which indicated that the quadratic correlation was more suitable for paraffinic oils with a CN value of below 37%.
文摘Low-temperature viscosity of lube oils mixed with paraffinic base oil and naphthenic base oil at different mass ratios has been tested by experiments. The influence of paraffinic base oil on the performance of naphthenic base oil was investigated by studying the low-temperature viscosity of tested oils. The viscosity of lube oils increased with an increasing content of high-viscosity paraffinic base oil in the oil mixture. And the low-temperature viscosity was less influenced when the content of paraffinic base oil in the mixture was insignificant. In order to reduce the cost for formulating lubricating oil, a small fraction of paraffinic base oil can be added into naphthenic base oil as far as the property of lubricating oil can meet the specification. According to the study on low-temperature viscosity of the oil mixed with paraffinic base oil and naphthenic base oil, a basic rule was worked out for the preparation of qualified lubricating oils.
文摘The factors affecting the developmcnt of Sinopec lubricating oil were analyzed in this paper, and an analytic hierarchy process (AHP) model for selecting lubricating-oil producing bases was developed. By using this model, nine lubricating oil producing companies under Sinopec were comprehensively evaluated. The evaluation result showed that the Maoming Lubricating Oil Company (Guangdong province), Jingmen Lubricating Oil Company (Hubei province) and Changcheng Lube Oil Company (Beijing) are top three choices, and should be developed preferentially for the development of Sinopec producing bases of lubricating oil in the future. The conclusions provide the theoretical basis for selecting lubricating oil producing bases for decision makers.
基金the financial support from the Natural Science Foundation of Chongqing(Project No.cstc2014jcyj A90013)
文摘In order to provide a new way for waste cooking oil(WCO) resource utilization, several diester derivatives were obtained from WCO through a three-step chemical modifications, viz.: transesterification, epoxidation and oxirane ring opening with carboxylic acids. The effects of the chain length of side chain groups on the viscosity, acid value, low temperature fluidity, thermo-oxidative stability, tribological properties and surface tension of diester derivatives were investigated. The results showed that increasing the chain length of side chain groups had a positive influence on the viscosity, viscosity index, acid value, pour point, friction coefficient and wear scar diameter along with a negative influence on the oxidation onset temperature, volatile loss, insoluble deposit, maximum non-seizure load and surface tension. These diester derivatives exhibited improved physicochemical and tribological properties that make themselves promising environmentally friendly biolubricant basestocks.
基金supported by the National Science Foundation of China (51105131)the Excellent Youth Foundation of Henan Scientific Committee (12410050002)the Creative Talent Foundation at Universities of Henan Province (2011HASTIT1016)
文摘The friction coefficients between the surfaces of a ball and a disc lubricated by a space lubricating oil No.4129 were measured at various operating conditions on a ball-disc friction test rig. Friction characteristic curves were obtained under sliding and rolling movements at point contact. A new model for calculation of the friction coefficient was presented. The results show that the bigger the load is, the larger the friction coefficient becomes. The rolling speed ranging from 1 m/s to10 m/s has an important effect on the friction coefficient. The friction coefficient increases with the increase in sliding speed and the decrease in rolling speed. The linear variation region of the friction coefficient versus the sliding speed at high rolling speed is wider than that at low rolling speed. The model for calculation of the friction coefficient is accurate for engineering use.
基金supported by the Chinese Academy of Sciences Strategic Pilot Science and Technology Special (Class A)(XDA21020000)the National Natural Science Foundation of China (22072175,21673272)support from the Ulam program,awarded by the Polish National Agency for Academic Exchange (NAWA),Poland,under project No.PPN/ULM/2020/1/00006/DEC/1
文摘The production of poly-α-olefins(PAOs)has attracted attention due to their excellent viscosity-temperature dependence,wear characteristics,oxidative properties,and high thermal stability.In this study,indene extracted during coal tar refining was used as a raw material to synthesize a bis(indenyl)zirconium dichloride metallocene catalyst.A PAO with low viscosity and a high viscosity index was produced via the oligomerization of 1-decene in the presence of both the prepared metallocene and a methylaluminoxane(MAO)co-catalyst.Notably,the effects of different synthesis reaction parameters,such as Al:Zr ratio,amount of catalyst,and reaction temperature,on the conversion ratio and product selectivity were investigated in detail.The produced PAO was thoroughly characterized using Fourier-transform infrared,^(13)C,and^(1)H nuclear magnetic resonance spectroscopies;gas chromatography;and viscosity measurements.At 70℃,the metallocene catalyst created more stable active sites.In addition,the alkylation effect of MAO was noticeable.Interestingly,the obtained catalysis results demonstrated that a high conversion ratio of~93%was achieved at a low reaction temperature of 70℃,with a catalyst dosage of 0.0848 mmol and Al:Zr ratio of 8.48mmol:0.0848mmol.Moreover,under these optimal conditions,the kinematic viscosity of PAO was 4.25 mm2/s at 100℃,and the viscosity index was 139,indicating good viscosity-temperature properties.
基金We are grateful for the support of the Science and Technology Innovation 2025 Major project of Ningbo[2018B10038]the Chair Professorship Program of Shandong University of Technology[117002]the Natural Science Foundation of Shandong Province[ZR2020MB130].
文摘This study analyzed the pyrolysis mechanism,developed a pyrolysis kinetic model,and determined the corresponding thermodynamic parameters for the removal of calcium from used lubricating oil using sulfurized calcium alkyl phenolate(T-115B)as a model compound.The pyrolysis process and products were evaluated by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy.Visual inspection indicated that the removal of calcium from T-115B depended primarily on the destruction of micelles caused by the pyrolysis of compounds at high temperatures.The pyrolysis characteristics of T-115B at different heating rates were investigated by thermogravimetry and differential thermal analysis,which revealed two distinct pyrolysis phases.Thus,the pyrolysis mechanism can be described by a twostep model.The activation energy and thermodynamic parameters(ΔH,ΔG,andΔS)were determined by applying the Kissinger-Akahira-Sunose,Flynn-Wall-Ozawa,Friedman,and Starink methods;the average activation energies for T-115B pyrolysis obtained using these methods were 115.80,119.84,124.96,and 116.14 kJ/mol,respectively.Further,both stages of the pyrolysis reaction followed Fn mechanisms with n=1.39 in the first stage and n=0.86 in the second stage.This study provides reliable and effective pyrolysis models along with kinetic and thermodynamic parameters to facilitate the largescale industrial application of used lubricating oil.
基金supported by the National Science Foundation of China (Nos. 51105131 and 51475143)the Henan Provincial Key Scientific and Technological Project (No. 142102210110)the Tianjin Science and Technology Support Program
文摘The traction behavior of space lubricating oil No. 4116 was measured and analyzed at various oil inlet temperatures below 0 ℃ and various rolling speeds under normal loads by a test rig simulating the operating conditions of space bearings. A traction coefficient calculation model was presented. The rheological property and rheological parameters of the lubricant at a low oil inlet temperature were analyzed based on the Tevaarwerk-Johnson model. The results showed that the lubricating oil No. 4116 was sensitive to the rolling speed and had lower sensitivity to the normal load. This lubricating oil is more suitable for applications under high speed when it is used below 0 ℃. It behaves as an elastic-plastic fluid operating below 0 ℃. Both the average limiting shear stress and the average elastic shear modulus have a negative correlation with the rolling speed and oil inlet temperature and have a positive correlation with the normal load.
基金the Natural Science Foundation of Xinjiang Uygur Autonomous Region(No.2022D01F37).
文摘Solvent extraction is the process of separating aromatics from vacuum distillates for the production oflubricating base oils. In this study, the authors use dimethyl sulfoxide (DMSO) instead of furfural as solvent, in light of itshigher selectivity, to obtain extracts with a high aromatic content for naphthenic lubricating base oils. We systematicallyinvestigated effects of the solvent-to-oil (S/O) ratio and extraction temperature on the yield of the extract, efficiency ofaromatic removal, and composition of the extracts and raffinates. The results showed that the aromatic content of extractsfor naphthenic oils could reach a high value of about 80%. The solvent maintained a high selectivity for aromatics fornaphthenic oils even under a high S/O ratio and a high extraction temperature. Moreover, the efficiency of aromatic removalfor naphthenic lubricating base oils could be enhanced by increasing either the S/O ratio or the extraction temperature,although these measures had limited effects in practice. Following this, we used the non-random two-liquid (NRTL) modelbased on the pseudo-component approach to simulate the liquid-liquid equilibrium of the system of DMSO + naphtheniclubricating base oils, and determined the parameters of binary interaction through regression based on the data on phaseequilibrium. The modeling results showed that the predicted yield, content of the solvent, and composition of the raffinatesand extracts were in good agreement with those obtained in the experiments. This validates the reliability of the model usedto represent the DMSO + naphthenic lubricating base oil system. Both the experimental data and the method of simulationreported here can help optimize the extraction of naphthenic lubricating base oils, and provide a better understanding of thecorresponding process.
基金financial support from the Special Project for Scientific and Technological Innovation of Social Undertakings and People’s Livelihood Guarantee of Chongqing Science and Technology Commission.(Project No.cstc2017shms-zdyfX0066)。
文摘As an alternative to petroleum-based lubricants, which are harmful to the environment in excessive amounts, a biodegradable multiester derivative(OFANE) was obtained from plant oil through a chemical modification process with four steps as follows: hydrolysis, esterification, epoxidation, and ring-opening reaction. The physical and chemical properties of OFANE, such as viscosity, acid value, pour point, evaporation loss, and oxidation induction time were measured. Results showed that OFANE had good low-temperature fluidity, thermal-oxidative stability, and tribological properties. The tribological properties of OFANE with dimeric acid additive were evaluated. The final biodegradation experiment indicated that OFANE had excellent biodegradability. The prepared OFANE showed great potential as substitute for petroleum-based lubricating base oils.
基金financially supported by SINOPEC(Grant No.124015)。
文摘Due to increasingly stricter emissions on particulate matter(PM)emissions,diesel particulate filter(DPF)regeneration has become the most widely used and effective technology to reduce PM emissions.However,using incylinder post-injection-based active DPF regeneration can increase engine oil dilution,thus affecting engine lubrication.Using a 4-cylinder turbocharged direct-injection diesel engine,this study analyzed the effect of lubricating oil on the formation and properties of turbocharger compressor soot deposits associated with engine oil dilution.Three diesel engine lubricating oils(CJ-4,CK-4,and CJ-4*)were selected,with each subjected to 200 hours of engine bench testing at 8%oil dilution.The composition of CJ-4*was the same as that of CJ-4 but with reduced amount of additives.Soot deposits were collected and analyzed.A merit calculation method was established to rate turbocharger deposits.Transmission electron microscopy,Raman spectroscopy,Fourier transform infrared spectroscopy,and thermogravimetric analysis(TGA)were used to characterize the morphology and composition of soot samples.The results showed that turbocharger deposits from CJ-4 and CK-4 were less than that from CJ-4*.The deposits from CJ-4*showed a more disordered morphology,whereas those from CJ-4 and CK-4 exhibited a higher degree of order.TGA results showed that the soluble organic fraction content in the deposit derived from CJ-4*was much higher than that obtained from CJ-4 and CK-4.
文摘Polymerization of mixed alpha-olefins originating from the Fischer-Tropsch synthesis catalyzed by theBu)_3/[Me_2NHPh]^+[B(C_6F_5)_4]^-,was studied.The effects of the Zr/olefin mole ratio,Al/Zr mole ratio,reaction temperature,and reaction time on the viscosity and molecular weight of the product were investigated.The conversion under optimized conditions reached 97.3%.The product structure was characterized by ^(13)C NMR spectrometry and ~1H NMR spectrometry,and the conversion of olefins with different carbon numbers under different conditions was determined by GC analysis.The polymer obtained under optimized conditions has a high viscosity index of 262 with a narrow molecular weight distribution of 1.95,which is a desired component for lubricating base oil.