Synchronization with lower SNR hadn't been considered by the conventional publications. Based on the Synchronized multi-carrier CDMA plus (SMCC+) system, which is one of the candidate schemes of digital terrestria...Synchronization with lower SNR hadn't been considered by the conventional publications. Based on the Synchronized multi-carrier CDMA plus (SMCC+) system, which is one of the candidate schemes of digital terrestrial TV broadcasting (DTTB) standard in China, a scheme under lower SNR with one short training sequence and one Barker code group, which were constructed in time domain. Computer simulation results show that the timing estimator here is designed to avoid the ambiguity which occured in Tufvesson's timing synchronization method. The 99.9% correct timing synchronization probability and lower false probability are got in AWGN and Rayleigh fading channels with SNR under -20 dB, and the optimum properties of frequency synchronization are obtained at the same time. It is shown that the proposed scheme is much better than the conventional synchronization methods.展开更多
分析了R ife算法的性能,指出当信号频率位于离散傅里叶变换(D iscrete Fourier T ransform,DFT)两个相邻量化频率点的中心区域时,R ife算法精度很高,其均方根误差接近克拉美-罗限(C ram er-R ao Low er Bound,CRLB),但当信号频率位于量...分析了R ife算法的性能,指出当信号频率位于离散傅里叶变换(D iscrete Fourier T ransform,DFT)两个相邻量化频率点的中心区域时,R ife算法精度很高,其均方根误差接近克拉美-罗限(C ram er-R ao Low er Bound,CRLB),但当信号频率位于量化频率点附近时,R ife算法精度降低。本文提出了一种修正R ife(M-R ife)算法,通过对信号进行频移,使新信号的频率位于两个相邻量化频率点的中心区域,然后再利用R ife算法进行频率估计。仿真结果表明本算法性能不随被估计信号的频率分布而产生波动,整体性能优于牛顿迭代法(一次迭代),接近二次迭代,在低信噪比条件下不存在发散问题,性能比牛顿迭代稳定。本算法易于硬件实现。展开更多
文摘Synchronization with lower SNR hadn't been considered by the conventional publications. Based on the Synchronized multi-carrier CDMA plus (SMCC+) system, which is one of the candidate schemes of digital terrestrial TV broadcasting (DTTB) standard in China, a scheme under lower SNR with one short training sequence and one Barker code group, which were constructed in time domain. Computer simulation results show that the timing estimator here is designed to avoid the ambiguity which occured in Tufvesson's timing synchronization method. The 99.9% correct timing synchronization probability and lower false probability are got in AWGN and Rayleigh fading channels with SNR under -20 dB, and the optimum properties of frequency synchronization are obtained at the same time. It is shown that the proposed scheme is much better than the conventional synchronization methods.