The main goal of this study is to use higher-order isogeometric analysis(IGA)to study the dynamic response of sandwich shells with an auxetic honeycomb core and two different functionally graded materials(FGM)skin lay...The main goal of this study is to use higher-order isogeometric analysis(IGA)to study the dynamic response of sandwich shells with an auxetic honeycomb core and two different functionally graded materials(FGM)skin layers(namely honeycomb-FGS shells)subjected to dynamic loading.Touratier's non-polynomial higher-order shear deformation theory(HSDT)is used due to its simplicity and performance.The governing equation is derived from Hamilton's principle.After verifying the present approach,the effect of input parameters on the dynamic response of honeycomb-FGS shells is carried out in detail.展开更多
This work uses refined first-order shear theory to analyze the free vibration and transient responses of double-curved sandwich two-layer shells made of auxetic honeycomb core and laminated three-phase polymer/GNP/fib...This work uses refined first-order shear theory to analyze the free vibration and transient responses of double-curved sandwich two-layer shells made of auxetic honeycomb core and laminated three-phase polymer/GNP/fiber surface subjected to the blast load.Each of the two layers that make up the double-curved shell structure is made up of an auxetic honeycomb core and two laminated sheets of three-phase polymer/GNP/fiber.The exterior is supported by a Kerr elastic foundation with three characteristics.The key innovation of the proposed theory is that the transverse shear stresses are zero at two free surfaces of each layer.In contrast to previous first-order shear deformation theories,no shear correction factor is required.Navier's exact solution was used to treat the double-curved shell problem with a single title boundary,while the finite element technique and an eight-node quadrilateral were used to address the other boundary requirements.To ensure the accuracy of these results,a thorough comparison technique is employed in conjunction with credible statements.The problem model's edge cases allow for this kind of analysis.The study's findings may be used in the post-construction evaluation of military and civil works structures for their ability to sustain explosive loads.In addition,this is also an important basis for the calculation and design of shell structures made of smart materials when subjected to shock waves or explosive loads.展开更多
In this paper,the isogeometric analysis(IGA)method is employed to analyze the oscillation characteristics of functionally graded triply periodic minimal surface(FG-TPMS)curved-doubly shells integrated with magneto-ele...In this paper,the isogeometric analysis(IGA)method is employed to analyze the oscillation characteristics of functionally graded triply periodic minimal surface(FG-TPMS)curved-doubly shells integrated with magneto-electric surface layers(referred to as"FG-TPMS-MEE curved-doubly shells")subjected to low-velocity impact loads.This study presents low-velocity impact load model based on a single springmass(S-M)approach.The FG-TPMS-MEE curved-doubly shells are covered with two magneto-electric surface layers,while the core layer consists of three types:I-graph and Wrapped Package-graph(IWP),Gyroid(G),and Primitive(P),with various graded functions.These types are notable for their exceptional stiffness-to-weight ratios,enabling a wide range of potential applications.The Maxwell equations and electromagnetic boundary conditions are applied to compute the change in electric potentials and magnetic potentials.The equilibrium equations of the shell are derived from a refined higher-order shear deformation theory(HSDT),and the transient responses of the FG-TPMS-MEE curveddoubly shells are subsequently determined using Newmark's direct integration method.These results have applications in structural vibration control and the analysis of structures subjected to impact or explosive loads.Furthermore,this study provides a theoretical prediction of the low-velocity impact load and magneto-electric-elastic effects on the free vibration and transient response of FG-TPMS-MEE curved-doubly shells.展开更多
The hypotheses of the Krmn_Donnell theory of thin shells with large deflections and the Boltzmann laws for isotropic linear, viscoelastic materials, the constitutive equations of shallow shells are first derived. ...The hypotheses of the Krmn_Donnell theory of thin shells with large deflections and the Boltzmann laws for isotropic linear, viscoelastic materials, the constitutive equations of shallow shells are first derived. Then the governing equations for the deflection and stress function are formulated by using the procedure similar to establishing the Krmn equations of elastic thin plates. Introducing proper assumptions, an approximate theory for viscoelastic cylindrical shells under axial pressures can be obtained. Finally, the dynamical behavior is studied in detail by using several numerical methods. Dynamical properties, such as, hyperchaos, chaos, strange attractor, limit cycle etc., are discovered.展开更多
The main objective of this study is to investigate the buckling analysis of CCSs reinforced by CNTs subjected to combined loading of hydrostatic pressure and axial compression resting on the twoparameter elastic found...The main objective of this study is to investigate the buckling analysis of CCSs reinforced by CNTs subjected to combined loading of hydrostatic pressure and axial compression resting on the twoparameter elastic foundation(T-P-EF).It is one of the first attempts to derive the governing equations of the CCSs reinforced with CNTs,based on a generalized first-order shear deformation shell theory(FSDST)which includes shell-foundation interaction.By adopting the extended mixing rule,the effective material properties of CCSs reinforced by CNTs with linear distributions are approximated by introducing some efficiency parameters.Three carbon nanotube distribution in the matrix,i.e.uniform distribution(U)and V and X-types linear distribution are taken into account.The stability equations are solved by using the Galerkin procedure to determine the combined buckling loads(CBLs)of the structure selected here.The numerical illustrations cover CBLs characteristics of CCSs reinforced by CNTs in the presence of the T-P-EF.Finally,a parametric study is carried out to study the influences of the foundation parameters,the volume fraction of carbon nanotubes and the types of reinforcement on the CBLs.展开更多
The initial geometric imperfection is one of the primary factors affecting the buckling behaviors of composite cylindrical shells under hydrostatic pressure.In this study,ovality and thickness variations as two repres...The initial geometric imperfection is one of the primary factors affecting the buckling behaviors of composite cylindrical shells under hydrostatic pressure.In this study,ovality and thickness variations as two representative types of the geometric imperfections are considered.After measuring the geometric imperfections,a typical carbon fiber reinforced polymers(CFRP)cylindrical shell is tested to obtain the buckling pressure.The buckling behaviors of the shell sample are analyzed in combination with the strain responses.By using the nonlinear numerical analysis,the buckling shapes of the CFRP cylinder shells with different combinations of ovality and thickness variation are firstly discussed.The rules of influence of such imperfections on the buckling pressure are then obtained by nonlinear regression method.Finally,an empirical formula is proposed to predict the buckling pressure of the composite cylinder shells,and the calculated results from the formula are in good agreement with the numerical results.展开更多
A semi-analytical method to conduct vibro-acoustic analysis of a composite laminated elliptical shell immersed in air is proposed.A variational method and multi-segment technique are used to formulate the dynamic mode...A semi-analytical method to conduct vibro-acoustic analysis of a composite laminated elliptical shell immersed in air is proposed.A variational method and multi-segment technique are used to formulate the dynamic model.The sound radiation of the exterior fluid field is calculated by a spectral Kirchhoff–Helmholtz integral formulation.The variables containing displacements and sound pressure are expanded by the combination of Fourier series and Chebyshev orthogonal polynomials.The collocation points are introduced to construct an algebraic system of acoustic integral equations,where these points are distributed on the roots of Chebyshev polynomials,and the non-uniqueness solution of system is eliminated by a combined Helmholtz integral.Numerical examples for sound radiation problems of composite laminated elliptical shells are presented and individual contributions of the circumferential modes to the acoustical results of composite laminated elliptical shells are also given.The effects of geometric and material parameters on sound radiation of composite laminated elliptical shells are also investigated.展开更多
Energy method for the vibration of two types of cylindrical shells,namely thin-walled homogeneous isotropic and manifold layered isotropic cylindrical shells under uniform external lateral pressure is presented.The st...Energy method for the vibration of two types of cylindrical shells,namely thin-walled homogeneous isotropic and manifold layered isotropic cylindrical shells under uniform external lateral pressure is presented.The study is carried out based on strain-displacement relationship from Love's shell theory with beam functions as axial modal function.A manifold layered cylindrical shell configuration is formed by three layers of isotropic material where the inner and outer layers are stainless steel and the middle layer is aluminum.The homogeneous cylindrical shell is made-up of isotropic one layer with stainless steel.The governing equations with uniform external lateral pressure for homogeneous isotropic and manifold layered isotropic cylindrical shells are obtained using energy functional by the Lagrangian function with Rayleigh-Ritz method.The boundary conditions that are presented at the end conditions of the cylindrical shell are simply supported-simply supported,clamped-clamped and free-free.The influences of uniform external lateral pressure and symmetrical boundary conditions on the natural frequency characteristics for both homogeneous and manifold layered isotropic cylindrical shells are examined.For all boundary conditions considered,the natural frequency of both cylindrical shells with symmetric uniform lateral pressure increases as h/R ratio increases and those considering natural frequency of the both cylindrical shells with symmetric uniform lateral pressure decrease as L/R ratio increases.展开更多
In this study,the buckling analysis of a Graphene oxide powder reinforced(GOPR)nanocomposite shell is investigated.The effective material properties of the nanocomposite are estimated through Halpin-Tsai micromechanic...In this study,the buckling analysis of a Graphene oxide powder reinforced(GOPR)nanocomposite shell is investigated.The effective material properties of the nanocomposite are estimated through Halpin-Tsai micromechanical scheme.Three distribution types of GOPs are considered,namely uniform,X and O.Also,a first-order shear deformation shell theory is incorporated with the principle of virtual work to derive the governing differential equations of the problem.The governing equations are solved via Galerkin’s method,which is a powerful analytical method for static and dynamic problems.Comparison study is performed to verify the present formulation with those of previous data.New results for the buckling load of GOPR nanocomposite shells are presented regarding for different values of circumferential wave number.Besides,the influences of weight fraction of nanofillers,length and radius to thickness ratios and elastic foundation on the critical buckling loads of GOP-reinforced nanocomposite shells are explored.展开更多
This study focuses on the effect of lateral mass impact on ring-stiffened thin-walled cylindrical shell.Cylindrical shells were fabricated to validate the numerical modeling and analytical techniques,and drop tests we...This study focuses on the effect of lateral mass impact on ring-stiffened thin-walled cylindrical shell.Cylindrical shells were fabricated to validate the numerical modeling and analytical techniques,and drop tests were performed using a rigid spherical indenter.Next,stiffened-ring cylindrical shells with various structural size parameters were simulated using ABAQUS software.The relationships between the impact force,deformation displacement,and rebound velocity were established,on the basis of impact mechanics theory and simulation results.It derived fitting functions to analyse the relationship between the maximum load and maximum displacement of ring-stiffened cylindrical shell under dynamic mass impact.Based on the validation of the simulation model,the fitting function data were compared with the simulation results,and the functions showed a good accuracy.Besides,the parameters,mass ratio and stiffened-ring mass ratio were used to reflect the effect of the mass change in the ring-stiffened cylindrical shell.Furthermore,parametric studies on ring-stiffened cylindrical shell models were conducted to analyse the progressive impact responses.展开更多
To explore the wide-frequency damping and vibration-attenuation performances in the application of aerospace components,the cylindrical sandwich shell structure with a gradient core of entangled wire mesh was proposed...To explore the wide-frequency damping and vibration-attenuation performances in the application of aerospace components,the cylindrical sandwich shell structure with a gradient core of entangled wire mesh was proposed in this paper.Firstly,the gradient cores of entangled wire mesh in the axial and radial directions were prepared by using an in-house Numerical Control weaving machine,and the metallurgical connection between skin sheets and the gradient core was performed using vacuum brazing.Secondly,to investigate the mechanical properties of cylindrical sandwich shells with axial or radial gradient cores,quasi-static and dynamic mechanical experiments were carried out.The primary evaluations of mechanical properties include secant stiffness,natural frequency,Specific Energy Absorption(SEA),vibration acceleration level,and so on.The results suggest that the vibration-attenuation performance of the sandwich shell is remarkable when the high-density core layer is at the end of the shell or abuts the inner skin.The axial gradient material has almost no influence on the vibration frequencies of the shell,whereas the vibration frequencies increase dramatically when the high-density core layer approaches the skin.Moreover,compared to the conventional sandwich shells,the proposed functional grading cylindrical sandwich shell exhibits more potential in mass reduction,stiffness designing,and energy dissipation.展开更多
Research on the expansion and fracture of explosively driven metal shells has been a key issue in weapon development and structural protection.It is important to study and predict the failure mode,fracture mechanism,a...Research on the expansion and fracture of explosively driven metal shells has been a key issue in weapon development and structural protection.It is important to study and predict the failure mode,fracture mechanism,and fragment distribution characteristics of explosively driven metal shells.In this study,we used the finite element-smoothed particle hydrodynamics(FE-SPH)adaptive method and the fluid-structure interaction method to perform a three-dimensional numerical simulation of the expansion and fracture of a metal cylindrical shell.Our method combined the advantages of the FEM and SPH,avoiding system mass loss,energy loss,and element distortion;in addition,the proposed method had a good simulation effect on the interaction between detonation waves and the cylindrical shell.The simulated detonation wave propagation,shell damage morphology,and fragment velocity distribution were in good agreement with theoretical and experimental results.We divided the fragments into three regions based on their shape characteristics.We analyzed the failure mode and formation process of fragments in different regions.The numerical results reproduced the phenomenon in which cracks initiated from the inner surface and extended to the outer surface of the cylindrical shell along the 45°or 135°shear direction.In addition,fragments composed of elements are identified,and the mass and characteristic lengths of typical fragments at a stable time are provided.Furthermore,the mass and size distribution characteristics of the fragments were explored,and the variation in the fitting results of the classical distribution function under different explosion pressures was examined.Finally,based on mathematical derivation,the distribution formula of fragment velocity was improved.The improved formula provided higher accuracy and could be used to analyze any metal cylindrical shells with different length-to-diameter ratios.展开更多
Based on the system dynamic model, a full system dynamics estimation method is proposed for a chain shell magazine driven by a permanent magnet synchronous motor(PMSM). An adaptive extended state observer(AESO) is pro...Based on the system dynamic model, a full system dynamics estimation method is proposed for a chain shell magazine driven by a permanent magnet synchronous motor(PMSM). An adaptive extended state observer(AESO) is proposed to estimate the unmeasured states and disturbance, in which the model parameters are adjusted in real time. Theoretical analysis shows that the estimation errors of the disturbances and unmeasured states converge exponentially to zero, and the parameter estimation error can be obtained from the extended state. Then, based on the extended state of the AESO, a novel parameter estimation law is designed. Due to the convergence of AESO, the novel parameter estimation law is insensitive to controllers and excitation signal. Under persistent excitation(PE) condition, the estimated parameters will converge to a compact set around the actual parameter value. Without PE signal, the estimated parameters will converge to zero for the extended state. Simulation and experimental results show that the proposed method can accurately estimate the unmeasured states and disturbance of the chain shell magazine, and the estimated parameters will converge to the actual value without strictly continuous PE signals.展开更多
Since the multi-layered structures are widely used nowadays, and due to interesting applications of cylindrical shells, this study is dedicated to analyzing free vibrational behaviors of functionally graded saturated ...Since the multi-layered structures are widely used nowadays, and due to interesting applications of cylindrical shells, this study is dedicated to analyzing free vibrational behaviors of functionally graded saturated porous micro cylindrical shells with two nanocomposite skins. Based on Biot's assumptions, constitutive relations for the core are presented and effective properties of the skins are determined via the rule of mixture. A sinusoidal theory is used to capture the shear deformation effects, and to account for the scale effects, the modified couple stress theory is employed which suggests a material length-scale parameter for predicting the results in small-dimension. With the aid of extended form of Hamilton's principle for dynamic systems, differential equations of motion are extracted. Fourier series functions are used to obtain natural frequencies and after validating them, a set of parametric studies are carried out. The results show the significant effects of porosity and Skempton coefficient, pores placement patterns, CNTs addition and distribution patterns, temperature variations, material length-scale parameter and viscoelastic medium on the natural frequencies of the microstructure. The outcomes of this work could be used to design and manufacture more reliable micro cylindrical structures in thermo-dynamical environments.展开更多
基金funded by Le Quy Don Technical University Research Found (Grant No.2023QHT.03)。
文摘The main goal of this study is to use higher-order isogeometric analysis(IGA)to study the dynamic response of sandwich shells with an auxetic honeycomb core and two different functionally graded materials(FGM)skin layers(namely honeycomb-FGS shells)subjected to dynamic loading.Touratier's non-polynomial higher-order shear deformation theory(HSDT)is used due to its simplicity and performance.The governing equation is derived from Hamilton's principle.After verifying the present approach,the effect of input parameters on the dynamic response of honeycomb-FGS shells is carried out in detail.
文摘This work uses refined first-order shear theory to analyze the free vibration and transient responses of double-curved sandwich two-layer shells made of auxetic honeycomb core and laminated three-phase polymer/GNP/fiber surface subjected to the blast load.Each of the two layers that make up the double-curved shell structure is made up of an auxetic honeycomb core and two laminated sheets of three-phase polymer/GNP/fiber.The exterior is supported by a Kerr elastic foundation with three characteristics.The key innovation of the proposed theory is that the transverse shear stresses are zero at two free surfaces of each layer.In contrast to previous first-order shear deformation theories,no shear correction factor is required.Navier's exact solution was used to treat the double-curved shell problem with a single title boundary,while the finite element technique and an eight-node quadrilateral were used to address the other boundary requirements.To ensure the accuracy of these results,a thorough comparison technique is employed in conjunction with credible statements.The problem model's edge cases allow for this kind of analysis.The study's findings may be used in the post-construction evaluation of military and civil works structures for their ability to sustain explosive loads.In addition,this is also an important basis for the calculation and design of shell structures made of smart materials when subjected to shock waves or explosive loads.
文摘In this paper,the isogeometric analysis(IGA)method is employed to analyze the oscillation characteristics of functionally graded triply periodic minimal surface(FG-TPMS)curved-doubly shells integrated with magneto-electric surface layers(referred to as"FG-TPMS-MEE curved-doubly shells")subjected to low-velocity impact loads.This study presents low-velocity impact load model based on a single springmass(S-M)approach.The FG-TPMS-MEE curved-doubly shells are covered with two magneto-electric surface layers,while the core layer consists of three types:I-graph and Wrapped Package-graph(IWP),Gyroid(G),and Primitive(P),with various graded functions.These types are notable for their exceptional stiffness-to-weight ratios,enabling a wide range of potential applications.The Maxwell equations and electromagnetic boundary conditions are applied to compute the change in electric potentials and magnetic potentials.The equilibrium equations of the shell are derived from a refined higher-order shear deformation theory(HSDT),and the transient responses of the FG-TPMS-MEE curveddoubly shells are subsequently determined using Newmark's direct integration method.These results have applications in structural vibration control and the analysis of structures subjected to impact or explosive loads.Furthermore,this study provides a theoretical prediction of the low-velocity impact load and magneto-electric-elastic effects on the free vibration and transient response of FG-TPMS-MEE curved-doubly shells.
文摘The hypotheses of the Krmn_Donnell theory of thin shells with large deflections and the Boltzmann laws for isotropic linear, viscoelastic materials, the constitutive equations of shallow shells are first derived. Then the governing equations for the deflection and stress function are formulated by using the procedure similar to establishing the Krmn equations of elastic thin plates. Introducing proper assumptions, an approximate theory for viscoelastic cylindrical shells under axial pressures can be obtained. Finally, the dynamical behavior is studied in detail by using several numerical methods. Dynamical properties, such as, hyperchaos, chaos, strange attractor, limit cycle etc., are discovered.
文摘The main objective of this study is to investigate the buckling analysis of CCSs reinforced by CNTs subjected to combined loading of hydrostatic pressure and axial compression resting on the twoparameter elastic foundation(T-P-EF).It is one of the first attempts to derive the governing equations of the CCSs reinforced with CNTs,based on a generalized first-order shear deformation shell theory(FSDST)which includes shell-foundation interaction.By adopting the extended mixing rule,the effective material properties of CCSs reinforced by CNTs with linear distributions are approximated by introducing some efficiency parameters.Three carbon nanotube distribution in the matrix,i.e.uniform distribution(U)and V and X-types linear distribution are taken into account.The stability equations are solved by using the Galerkin procedure to determine the combined buckling loads(CBLs)of the structure selected here.The numerical illustrations cover CBLs characteristics of CCSs reinforced by CNTs in the presence of the T-P-EF.Finally,a parametric study is carried out to study the influences of the foundation parameters,the volume fraction of carbon nanotubes and the types of reinforcement on the CBLs.
基金supported by the National Natural Science Foundation of China(Grant No.51909219)the National Key Research and Development Program of China(Grant No.2016YFC0301300)+1 种基金Fundamental Research Funds for the Central Universities(Grant No.3102019JC006)China Postdoctoral Science Foundation(Grand No.2020M673492)。
文摘The initial geometric imperfection is one of the primary factors affecting the buckling behaviors of composite cylindrical shells under hydrostatic pressure.In this study,ovality and thickness variations as two representative types of the geometric imperfections are considered.After measuring the geometric imperfections,a typical carbon fiber reinforced polymers(CFRP)cylindrical shell is tested to obtain the buckling pressure.The buckling behaviors of the shell sample are analyzed in combination with the strain responses.By using the nonlinear numerical analysis,the buckling shapes of the CFRP cylinder shells with different combinations of ovality and thickness variation are firstly discussed.The rules of influence of such imperfections on the buckling pressure are then obtained by nonlinear regression method.Finally,an empirical formula is proposed to predict the buckling pressure of the composite cylinder shells,and the calculated results from the formula are in good agreement with the numerical results.
基金Project(51705537)supported by the National Natural Science Foundation of ChinaProject(2018JJ3661)+2 种基金supported by the Natural Science Foundation of Hunan Province of ChinaProject(ZZYJKT2018-11)supported by State Key Laboratory of High Performance Complex Manufacturing,China。
文摘A semi-analytical method to conduct vibro-acoustic analysis of a composite laminated elliptical shell immersed in air is proposed.A variational method and multi-segment technique are used to formulate the dynamic model.The sound radiation of the exterior fluid field is calculated by a spectral Kirchhoff–Helmholtz integral formulation.The variables containing displacements and sound pressure are expanded by the combination of Fourier series and Chebyshev orthogonal polynomials.The collocation points are introduced to construct an algebraic system of acoustic integral equations,where these points are distributed on the roots of Chebyshev polynomials,and the non-uniqueness solution of system is eliminated by a combined Helmholtz integral.Numerical examples for sound radiation problems of composite laminated elliptical shells are presented and individual contributions of the circumferential modes to the acoustical results of composite laminated elliptical shells are also given.The effects of geometric and material parameters on sound radiation of composite laminated elliptical shells are also investigated.
文摘Energy method for the vibration of two types of cylindrical shells,namely thin-walled homogeneous isotropic and manifold layered isotropic cylindrical shells under uniform external lateral pressure is presented.The study is carried out based on strain-displacement relationship from Love's shell theory with beam functions as axial modal function.A manifold layered cylindrical shell configuration is formed by three layers of isotropic material where the inner and outer layers are stainless steel and the middle layer is aluminum.The homogeneous cylindrical shell is made-up of isotropic one layer with stainless steel.The governing equations with uniform external lateral pressure for homogeneous isotropic and manifold layered isotropic cylindrical shells are obtained using energy functional by the Lagrangian function with Rayleigh-Ritz method.The boundary conditions that are presented at the end conditions of the cylindrical shell are simply supported-simply supported,clamped-clamped and free-free.The influences of uniform external lateral pressure and symmetrical boundary conditions on the natural frequency characteristics for both homogeneous and manifold layered isotropic cylindrical shells are examined.For all boundary conditions considered,the natural frequency of both cylindrical shells with symmetric uniform lateral pressure increases as h/R ratio increases and those considering natural frequency of the both cylindrical shells with symmetric uniform lateral pressure decrease as L/R ratio increases.
文摘In this study,the buckling analysis of a Graphene oxide powder reinforced(GOPR)nanocomposite shell is investigated.The effective material properties of the nanocomposite are estimated through Halpin-Tsai micromechanical scheme.Three distribution types of GOPs are considered,namely uniform,X and O.Also,a first-order shear deformation shell theory is incorporated with the principle of virtual work to derive the governing differential equations of the problem.The governing equations are solved via Galerkin’s method,which is a powerful analytical method for static and dynamic problems.Comparison study is performed to verify the present formulation with those of previous data.New results for the buckling load of GOPR nanocomposite shells are presented regarding for different values of circumferential wave number.Besides,the influences of weight fraction of nanofillers,length and radius to thickness ratios and elastic foundation on the critical buckling loads of GOP-reinforced nanocomposite shells are explored.
基金supported by the National Natural Science Foundation of China(Grant No.51508123,named“Study on blast response of floating roof storage tank in material point method”)Natural Science Foundation of Heilongjiang Province,China(LH2019A008)to provide fund for conducting experiments and research.The authors would like to acknowledge Professor Wei Wang in Harbin Institute of Technology for instructions and help in experiment design.
文摘This study focuses on the effect of lateral mass impact on ring-stiffened thin-walled cylindrical shell.Cylindrical shells were fabricated to validate the numerical modeling and analytical techniques,and drop tests were performed using a rigid spherical indenter.Next,stiffened-ring cylindrical shells with various structural size parameters were simulated using ABAQUS software.The relationships between the impact force,deformation displacement,and rebound velocity were established,on the basis of impact mechanics theory and simulation results.It derived fitting functions to analyse the relationship between the maximum load and maximum displacement of ring-stiffened cylindrical shell under dynamic mass impact.Based on the validation of the simulation model,the fitting function data were compared with the simulation results,and the functions showed a good accuracy.Besides,the parameters,mass ratio and stiffened-ring mass ratio were used to reflect the effect of the mass change in the ring-stiffened cylindrical shell.Furthermore,parametric studies on ring-stiffened cylindrical shell models were conducted to analyse the progressive impact responses.
基金Supports from the National Natural Science Foundation of China(Grant No.12272094,No.52205185 and No.51975123)the Natural Science Foundation of Fujian Province of China(Grant No.2022J01541 and No.2020J05102)the Key Project of National Defence Innovation Zone of Science and Technology Commission of CMC(Grant No.XXX-033-01)。
文摘To explore the wide-frequency damping and vibration-attenuation performances in the application of aerospace components,the cylindrical sandwich shell structure with a gradient core of entangled wire mesh was proposed in this paper.Firstly,the gradient cores of entangled wire mesh in the axial and radial directions were prepared by using an in-house Numerical Control weaving machine,and the metallurgical connection between skin sheets and the gradient core was performed using vacuum brazing.Secondly,to investigate the mechanical properties of cylindrical sandwich shells with axial or radial gradient cores,quasi-static and dynamic mechanical experiments were carried out.The primary evaluations of mechanical properties include secant stiffness,natural frequency,Specific Energy Absorption(SEA),vibration acceleration level,and so on.The results suggest that the vibration-attenuation performance of the sandwich shell is remarkable when the high-density core layer is at the end of the shell or abuts the inner skin.The axial gradient material has almost no influence on the vibration frequencies of the shell,whereas the vibration frequencies increase dramatically when the high-density core layer approaches the skin.Moreover,compared to the conventional sandwich shells,the proposed functional grading cylindrical sandwich shell exhibits more potential in mass reduction,stiffness designing,and energy dissipation.
基金supported by the National Natural Science Foundation of China(Grant No.11872118,11627901)。
文摘Research on the expansion and fracture of explosively driven metal shells has been a key issue in weapon development and structural protection.It is important to study and predict the failure mode,fracture mechanism,and fragment distribution characteristics of explosively driven metal shells.In this study,we used the finite element-smoothed particle hydrodynamics(FE-SPH)adaptive method and the fluid-structure interaction method to perform a three-dimensional numerical simulation of the expansion and fracture of a metal cylindrical shell.Our method combined the advantages of the FEM and SPH,avoiding system mass loss,energy loss,and element distortion;in addition,the proposed method had a good simulation effect on the interaction between detonation waves and the cylindrical shell.The simulated detonation wave propagation,shell damage morphology,and fragment velocity distribution were in good agreement with theoretical and experimental results.We divided the fragments into three regions based on their shape characteristics.We analyzed the failure mode and formation process of fragments in different regions.The numerical results reproduced the phenomenon in which cracks initiated from the inner surface and extended to the outer surface of the cylindrical shell along the 45°or 135°shear direction.In addition,fragments composed of elements are identified,and the mass and characteristic lengths of typical fragments at a stable time are provided.Furthermore,the mass and size distribution characteristics of the fragments were explored,and the variation in the fitting results of the classical distribution function under different explosion pressures was examined.Finally,based on mathematical derivation,the distribution formula of fragment velocity was improved.The improved formula provided higher accuracy and could be used to analyze any metal cylindrical shells with different length-to-diameter ratios.
文摘Based on the system dynamic model, a full system dynamics estimation method is proposed for a chain shell magazine driven by a permanent magnet synchronous motor(PMSM). An adaptive extended state observer(AESO) is proposed to estimate the unmeasured states and disturbance, in which the model parameters are adjusted in real time. Theoretical analysis shows that the estimation errors of the disturbances and unmeasured states converge exponentially to zero, and the parameter estimation error can be obtained from the extended state. Then, based on the extended state of the AESO, a novel parameter estimation law is designed. Due to the convergence of AESO, the novel parameter estimation law is insensitive to controllers and excitation signal. Under persistent excitation(PE) condition, the estimated parameters will converge to a compact set around the actual parameter value. Without PE signal, the estimated parameters will converge to zero for the extended state. Simulation and experimental results show that the proposed method can accurately estimate the unmeasured states and disturbance of the chain shell magazine, and the estimated parameters will converge to the actual value without strictly continuous PE signals.
文摘Since the multi-layered structures are widely used nowadays, and due to interesting applications of cylindrical shells, this study is dedicated to analyzing free vibrational behaviors of functionally graded saturated porous micro cylindrical shells with two nanocomposite skins. Based on Biot's assumptions, constitutive relations for the core are presented and effective properties of the skins are determined via the rule of mixture. A sinusoidal theory is used to capture the shear deformation effects, and to account for the scale effects, the modified couple stress theory is employed which suggests a material length-scale parameter for predicting the results in small-dimension. With the aid of extended form of Hamilton's principle for dynamic systems, differential equations of motion are extracted. Fourier series functions are used to obtain natural frequencies and after validating them, a set of parametric studies are carried out. The results show the significant effects of porosity and Skempton coefficient, pores placement patterns, CNTs addition and distribution patterns, temperature variations, material length-scale parameter and viscoelastic medium on the natural frequencies of the microstructure. The outcomes of this work could be used to design and manufacture more reliable micro cylindrical structures in thermo-dynamical environments.