The article discusses the use of pulse-width modulation signals to generate low-temperature atmospheric plasma in an inert gas environment.The results of studies of the energy consumption of a low-temperature plasma g...The article discusses the use of pulse-width modulation signals to generate low-temperature atmospheric plasma in an inert gas environment.The results of studies of the energy consumption of a low-temperature plasma generation system depending on the duty rate,as well as the pulse repetition rate,are presented.The operating modes of the system have been established,in which a minimum of energy consumption is achieved.The issues of evaluating the interaction of plasma with objects based on the analysis of changes in signal parameters in the high-voltage circuit of the generator are also considered.展开更多
The killing logarithms index in killing a vegetative form in an explosure of about 90s and a spore in an explosure of about 120s, by using a low-temperature plasma produced by dielectric barrier discharge (DBD), rea...The killing logarithms index in killing a vegetative form in an explosure of about 90s and a spore in an explosure of about 120s, by using a low-temperature plasma produced by dielectric barrier discharge (DBD), reached 5. The speed in killing the strains tested, by using a low-temperature plasma, was the highest with E. Coli, then S. Aureus and B. Subtilis var niger spore. The results of the scanning electron microscope showed that the low-temperature plasma destroyed the outer structure of the bacteria and that the vegetative form was more susceptible to the inactivation effect of the low-temperature plasma than was the spore. This indicated that the effects of the high voltage and high velocity particle flow, in plasma, penetrating through the outer structure of the bacteria might play a dominant role during the inactivation of the bacteria.展开更多
A multi-functional micro-arc plasma spraying system was developed according to aerodynamics and plasma spray theory. The soft switch IGBT (Insulated Gate Bipolar Transistor) invert technique, micro-computer control ...A multi-functional micro-arc plasma spraying system was developed according to aerodynamics and plasma spray theory. The soft switch IGBT (Insulated Gate Bipolar Transistor) invert technique, micro-computer control technique, convergent-divergent nozzle structure and axial powder feeding techniques have been adopted in the design of the micro-arc plasma spraying system. It is not only characterized by a small volume, a light weight, highly accurate control, high deposition efficiency and high reliability, but also has multi-functions in plasma spraying, welding and quenching. The experimental results showed that the system can produce a supersonic flame at a low power, spray Al2O3 particles at an average speed up to 430 m/s, and make nanostructured AT13 coatings with an average bonding strength of 42.7 MPa. Compared to conventional 9M plasma spraying with a higher power, the coatings with almost the same properties as those by conventional plasma spray can be deposited by multi-functional micro-arc plasma spraying with a lower power plasma arc due to an improved power supply design, spray gun structure and powder feeding method. Moreover, this system is suitable for working with thin parts and undertaking on site repairs, and as a result, the application of plasma spraying will be greatly extended.展开更多
In order to control the surface pore sizes of polyvinylidene fluoride membranes and their distribution, low temperature plasma-induced grafting modifications of PVDF were studied to prepare hydrophobe membranes. By ar...In order to control the surface pore sizes of polyvinylidene fluoride membranes and their distribution, low temperature plasma-induced grafting modifications of PVDF were studied to prepare hydrophobe membranes. By argon (Ar) treating and subsequent grafting reaction, a hydrophobe monomer, styrene, was introduced into the PVDF membrane. Fourier transform infrared attenuated total reflection (FTIR-ATR) was utilized to characterize the chemical and physical changes in the Ar plasma modified membrane. The surface modifications of PVDF membranes were investigated by using scanning electron microscopy (SEM), atomic force microscopy (AFM) and differential scanning calorimeter (DSC). The water permeability and the solute rejection were measured by PVDF membrane modified in different graft conditions. Results demonstrated that the pores in the modified membranes get smaller and the distribution of pores gets narrowed with the increase in grafting reaction duration. Longer graft time caused the water flux of PVDF membrane to decrease from 578 kg/(m^2· h) to 23 kg/(m^2· h) and the solute rejection to increase from 73% to 92%.展开更多
With the aim of controlling the problem of fine particles in the flue gas of lead-zinc smelting,a low-temperature plasma-electrocoagulation and electric bag composite dedusting experimental platform was designed by co...With the aim of controlling the problem of fine particles in the flue gas of lead-zinc smelting,a low-temperature plasma-electrocoagulation and electric bag composite dedusting experimental platform was designed by combining electrocoagulation and electric bag composite dust removal technology based on the research of low-temperature plasma technology.Firstly,the properties of fine particles in flue gas from lead-zinc smelting were analyzed,and the effects of input voltage,filter wind speed,dust concentration,and pulse-jet ash-cleaning cycle on the dust collection efficiency of the integrated device were studied.Then,the energy efficiency of the integrated technology was analyzed,and the control mechanism of the fine particles was revealed.The experimental results show that the integrated technology of low-temperature plasma-electrocoagulation and electric bag composite dust removal achieves a fine particle removal efficiency of more than 99.99%and the energy consumption per unit mass of the dust is only 0.008 k W·h/g.The integrated technology has broad application prospects and farreaching practical significance for the lead-zinc smelting industry to achieve ultra-low emission targets for flue gas and achieve energy-saving and emission reduction effects.展开更多
Atmospheric pressure low-temperature plasma is a promising tool in biomedicine applications including blood coagulation,bacterial inactivation,sterilization,and cancer treatment,due to its high chemical activity and l...Atmospheric pressure low-temperature plasma is a promising tool in biomedicine applications including blood coagulation,bacterial inactivation,sterilization,and cancer treatment,due to its high chemical activity and limited thermal damage.It is of great importance to develop portable plasma sources that are safe to human touch and suitable for outdoor and household operation.In this work,a portable and rechargeable low-temperature plasma spark discharge device(130 mm×80 mm×35 mm,300 g)was designed.The discharge frequency and plume length were optimized by the selection of resistance,capacitance,electrode gap,and ground electrode aperture.Results show that the spark plasma plume is generated with a length of 12 mm and a frequency of 10 Hz at a capacitance of 0.33μF.resistance of 1 MΩ,electrode gap of 2 mm,and ground electrode aperture of 1.5 mm.Biological tests indicate that the plasma produced by this device contains abundant reactive species,which can be applied in plasma biomedicine,including daily sterilization and wound healing.展开更多
The high incidence of catheter-associated urinary tract infections,which are dominated by drugresistant bacteria,has attracted an increasing number of researchers interested in solving this public health problem.The p...The high incidence of catheter-associated urinary tract infections,which are dominated by drugresistant bacteria,has attracted an increasing number of researchers interested in solving this public health problem.The purpose of this study was to explore the killing effect of lowtemperature air plasma(LTAP)on extended-spectrum beta-lactamase-producing Escherichia coli and high level gentamycin resistance enterococci under two simulated environments in vitro.The results showed that the survival rate of these two kinds of bacteria decreased to less than20%after being treated by LTAP in different environments for 5 min.A comparison of the LTAP treatments showed that the killing efficacy of the two kinds of bacteria in the early stage(0-1 min)was up to 50%.Moreover,the results of transmission electron microscopy,reactive nitrogen species measurement,and a temperature test indicated that the bactericidal effect of the LTAP treatment on the two kinds of bacteria worked through the destruction of the ribosome and other organelles inside the bacteria,rather than the thermal effect,to achieve sterilization.展开更多
The destruction of gaseous styrene was studied using a low-temperature plasma induced by tubular multilayer dielectric barrier discharge(DBD).The results indicate that the applied voltage,gas flow rate,inlet styrene...The destruction of gaseous styrene was studied using a low-temperature plasma induced by tubular multilayer dielectric barrier discharge(DBD).The results indicate that the applied voltage,gas flow rate,inlet styrene concentration and reactor configuration play important roles in styrene removal efficiency (ηstyrene) and energy yield(EY).Values of ηstyrene and EY reached 96%and 15567 mg/kWh when the applied voltage,gas flow rate,inlet styrene concentration and layers of quartz tubes were set at 10.8 kV,5.0 m/s,229 mg/m^3 and 5 layers,respectively.A qualitative analysis of the byproducts and a detailed discussion of the reaction mechanism are also presented.The results could facilitate industrial applications of the new DBD reactor for waste gas treatment.展开更多
Continuous emission spectrum measurement is applied for the inconvenient diagnos- tics of low-temperature collisional plasmas. According to the physical mechanism of continuous emission, a simplified model is presente...Continuous emission spectrum measurement is applied for the inconvenient diagnos- tics of low-temperature collisional plasmas. According to the physical mechanism of continuous emission, a simplified model is presented to analyze the spectrum in low temperature plasma. The validity of this model is discussed in a wide range of discharge parameters, including electron tem- perature and ionization degree. Through the simplified model, the continuous emission spectrum in a collisional argon internal inductively coupled plasma is experimentally measured to determine the electron temperature distribution for different gas pressures and radio-frequency powers. The inverse Abel transform is also applied for a better spatially resoluted results. Meanwhile, the result of the continuous emission spectrum measurement is compared to that of the electrostatic double probes, which indicates the effectiveness of this method.展开更多
TiN/Ti multi-permeating alloying layer has been formed on the low carbon steel by means of the double glow-discharge plasma surface alloying technique and hollow-cathode effect. The alloying layer was detected by axio...TiN/Ti multi-permeating alloying layer has been formed on the low carbon steel by means of the double glow-discharge plasma surface alloying technique and hollow-cathode effect. The alloying layer was detected by axiovert 25 CA optical microscope with computer analyzing software (LEC), GDA-2 glow discharge spectroscopy (GDS), X-ray diffraction (XRD) and galvanochemical method. The results showed that the thickness of TiN/Ti multi-permeating alloying layer was about 10μm, the content of Ti on the surface was up to 63.48 wt% and the content of N was up to 12.46 wt%. The atom Ti and N concentrations changed gradually across the depth of the alloying layer and the preferred orientation of TiN/Ti alloying layer was crystal surface (200). The multi-permeating alloying layer and substrate were combined through metallurgy. The surface appearances of the multi-permeating alloying layer were uniform and of a compact cellular structure. The hardness of the surface was about 1600-3000 HV0.1. The corrosion resistance of the permeating TiN/Ti alloying layer in 0.5 mol/L H2SO4 solution was greatly increased and the corrosion rate was only 0.3082 g/m^2. h.展开更多
Ignition is a key system in pulse detonation engines (PDE). As advanced ignition methods, nanosecond pulse discharge low-temperature plasma ignition is used in some combustion systems, and continuous alternating cur...Ignition is a key system in pulse detonation engines (PDE). As advanced ignition methods, nanosecond pulse discharge low-temperature plasma ignition is used in some combustion systems, and continuous alternating current (AC) driven low-temperature plasma using dielectric barrier discharge (DBD) is used for the combustion assistant. However, continuous AC driven plasmas cannot be used for ignition in pulse detonation engines. In this paper, experimental and numerical studies of pneumatic valve PDE using an AC driven low-temperature plasma igniter were described. The pneumatic valve was jointly designed with the low-temperature plasma igniter, and the numerical simulation of the cold-state flow field in the pneumatic valve showed that a complex flow in the discharge area, along with low speed, was beneficial for successful ignition. In the experiments ethylene was used as the fuel and air as oxidizing agent, ignition by an AC driven low-temperature plasma achieved multi-cycle intermittent detonation combustion on a PDE, the working frequency of the PDE reached 15 Hz and the peak pressure of the detonation wave was approximately 2.0 MPa. The experimental verifications of the feasibility in PDE ignition expanded the application field of AC driven low-temperature plasma.展开更多
The interaction between the supersonic molecular beam(SMB)and the low-temperature plasma is a critical issue for the diagnosis and fueling in the Tokamak device.In this work,the interaction process between the argon S...The interaction between the supersonic molecular beam(SMB)and the low-temperature plasma is a critical issue for the diagnosis and fueling in the Tokamak device.In this work,the interaction process between the argon SMB and the argon plasma is studied by a high-speed camera based on the Linear Experimental Advanced Device(LEAD)in Southwestern Institute of Physics,China.It is found that the high-density SMB can extinct the plasma temporarily and change the distribution of the plasma density significantly,while the low-density SMB can hardly affect the distribution of plasma density.This can be used as an effective diagnostic technique to study the evolution of plasma density in the interaction between the SMB and plasma.Moreover,the related simulation based on this experiment is carried out to better understand the evolution of electron density and ion density in the interaction.The simulation results can be used to analyze and explain the experimental results well.展开更多
In this study, a low-temperature annealed ohmic contact process was proposed on AlGaN/GaN heterostructure field effect transistors (HFETs) with the assistance of inductively coupled plasma (ICP) surface treatment....In this study, a low-temperature annealed ohmic contact process was proposed on AlGaN/GaN heterostructure field effect transistors (HFETs) with the assistance of inductively coupled plasma (ICP) surface treatment. The effect of ICP treatment process on the 2DEG channel as well as the formation mechanism of the low annealing temperature ohmic contact was investigated. An appropriate residual AlGaN thickness and a plasma-induced damage are considered to contribute to the low-temperature annealed ohmic contact. By using a single Al layer to replace the conventional Ti/Al stacks, ohmic contact with a contact resistance of 0.35 Ω.mm was obtained when annealed at 575 ℃ for 3 min. Good ohmic contact was also obtained by annealing at 500 ℃ for 20 rain.展开更多
Fungal infection of human nails,or onychomycosis,affects 10%of the world's adult population,but current therapies have various drawbacks.In this work,we employed a self-made low-temperature plasma(LTP)device,namel...Fungal infection of human nails,or onychomycosis,affects 10%of the world's adult population,but current therapies have various drawbacks.In this work,we employed a self-made low-temperature plasma(LTP)device,namely,an atmospheric-pressure plasma jet(APPJ)device to treat the nails infected with Trichophyton rubrum(T.rubrum)with the aid of persulfate solution.We found that persulfate solution had a promoting effect on plasma treatment of onychomycosis.With addition of sodium persulfate,the APPJ therapy could cure onychomycosis after several times of treatment.As such,this work has demonstrated a novel and effective approach which makes good use of LTP technique in the treatment of onychomycosis.展开更多
International Symposium on Plasma Chemistry (ISPC) is the most influencial in- ternational symposium on science and technology research of low-temperature plasma, especially in the fields related to materials processi...International Symposium on Plasma Chemistry (ISPC) is the most influencial in- ternational symposium on science and technology research of low-temperature plasma, especially in the fields related to materials processing. People can be rightly informed of the current devel- oping trend of this field from the contents of these symposia. This paper will introduce briefly a general overview of the 15th ISPC. As viewed from the number of papers and their contents, there is still abundant research on thermal plasma, and the needs fOr micro-electronic technology and high performance films have driven forward continuous and intensive development of the research on low-pressure, non-equilibrium plasmas, while the research on normal pressure, non-equilibrium plasma has become a new highlight in this field.展开更多
文摘The article discusses the use of pulse-width modulation signals to generate low-temperature atmospheric plasma in an inert gas environment.The results of studies of the energy consumption of a low-temperature plasma generation system depending on the duty rate,as well as the pulse repetition rate,are presented.The operating modes of the system have been established,in which a minimum of energy consumption is achieved.The issues of evaluating the interaction of plasma with objects based on the analysis of changes in signal parameters in the high-voltage circuit of the generator are also considered.
文摘The killing logarithms index in killing a vegetative form in an explosure of about 90s and a spore in an explosure of about 120s, by using a low-temperature plasma produced by dielectric barrier discharge (DBD), reached 5. The speed in killing the strains tested, by using a low-temperature plasma, was the highest with E. Coli, then S. Aureus and B. Subtilis var niger spore. The results of the scanning electron microscope showed that the low-temperature plasma destroyed the outer structure of the bacteria and that the vegetative form was more susceptible to the inactivation effect of the low-temperature plasma than was the spore. This indicated that the effects of the high voltage and high velocity particle flow, in plasma, penetrating through the outer structure of the bacteria might play a dominant role during the inactivation of the bacteria.
文摘A multi-functional micro-arc plasma spraying system was developed according to aerodynamics and plasma spray theory. The soft switch IGBT (Insulated Gate Bipolar Transistor) invert technique, micro-computer control technique, convergent-divergent nozzle structure and axial powder feeding techniques have been adopted in the design of the micro-arc plasma spraying system. It is not only characterized by a small volume, a light weight, highly accurate control, high deposition efficiency and high reliability, but also has multi-functions in plasma spraying, welding and quenching. The experimental results showed that the system can produce a supersonic flame at a low power, spray Al2O3 particles at an average speed up to 430 m/s, and make nanostructured AT13 coatings with an average bonding strength of 42.7 MPa. Compared to conventional 9M plasma spraying with a higher power, the coatings with almost the same properties as those by conventional plasma spray can be deposited by multi-functional micro-arc plasma spraying with a lower power plasma arc due to an improved power supply design, spray gun structure and powder feeding method. Moreover, this system is suitable for working with thin parts and undertaking on site repairs, and as a result, the application of plasma spraying will be greatly extended.
基金supported by the Major State Basic Research Program of China (No. 2009CB623404) National Natural Science Foundation of China (Nos. 20736003, 20676067)+2 种基金 National High Technology Research and Development Program of China (No. 2007AA06Z317)Foundation of Ministry of Education of China (No. 20070003130)Foundation of the State Key Laboratory of Chemical Engineering (No. SKL-ChE-08A01)
文摘In order to control the surface pore sizes of polyvinylidene fluoride membranes and their distribution, low temperature plasma-induced grafting modifications of PVDF were studied to prepare hydrophobe membranes. By argon (Ar) treating and subsequent grafting reaction, a hydrophobe monomer, styrene, was introduced into the PVDF membrane. Fourier transform infrared attenuated total reflection (FTIR-ATR) was utilized to characterize the chemical and physical changes in the Ar plasma modified membrane. The surface modifications of PVDF membranes were investigated by using scanning electron microscopy (SEM), atomic force microscopy (AFM) and differential scanning calorimeter (DSC). The water permeability and the solute rejection were measured by PVDF membrane modified in different graft conditions. Results demonstrated that the pores in the modified membranes get smaller and the distribution of pores gets narrowed with the increase in grafting reaction duration. Longer graft time caused the water flux of PVDF membrane to decrease from 578 kg/(m^2· h) to 23 kg/(m^2· h) and the solute rejection to increase from 73% to 92%.
基金supported by the State Key Laboratory of Organic Geochemistry,GIGCAS(No.SKLOG-201909)the Fundamental Research Funds for the Central Universities(2009QH03)funded by the Open Foundation of Shaanxi Key Laboratory of Lacustrine Shale Gas Accumulation and Exploitation(under planning).
文摘With the aim of controlling the problem of fine particles in the flue gas of lead-zinc smelting,a low-temperature plasma-electrocoagulation and electric bag composite dedusting experimental platform was designed by combining electrocoagulation and electric bag composite dust removal technology based on the research of low-temperature plasma technology.Firstly,the properties of fine particles in flue gas from lead-zinc smelting were analyzed,and the effects of input voltage,filter wind speed,dust concentration,and pulse-jet ash-cleaning cycle on the dust collection efficiency of the integrated device were studied.Then,the energy efficiency of the integrated technology was analyzed,and the control mechanism of the fine particles was revealed.The experimental results show that the integrated technology of low-temperature plasma-electrocoagulation and electric bag composite dust removal achieves a fine particle removal efficiency of more than 99.99%and the energy consumption per unit mass of the dust is only 0.008 k W·h/g.The integrated technology has broad application prospects and farreaching practical significance for the lead-zinc smelting industry to achieve ultra-low emission targets for flue gas and achieve energy-saving and emission reduction effects.
基金supported by National Natural Science Foundation of China(Nos.51677083 and 51377075)Postgraduate Research and Practice Innovation Program of Jiangsu Province(SJCX18_0340)
文摘Atmospheric pressure low-temperature plasma is a promising tool in biomedicine applications including blood coagulation,bacterial inactivation,sterilization,and cancer treatment,due to its high chemical activity and limited thermal damage.It is of great importance to develop portable plasma sources that are safe to human touch and suitable for outdoor and household operation.In this work,a portable and rechargeable low-temperature plasma spark discharge device(130 mm×80 mm×35 mm,300 g)was designed.The discharge frequency and plume length were optimized by the selection of resistance,capacitance,electrode gap,and ground electrode aperture.Results show that the spark plasma plume is generated with a length of 12 mm and a frequency of 10 Hz at a capacitance of 0.33μF.resistance of 1 MΩ,electrode gap of 2 mm,and ground electrode aperture of 1.5 mm.Biological tests indicate that the plasma produced by this device contains abundant reactive species,which can be applied in plasma biomedicine,including daily sterilization and wound healing.
文摘The high incidence of catheter-associated urinary tract infections,which are dominated by drugresistant bacteria,has attracted an increasing number of researchers interested in solving this public health problem.The purpose of this study was to explore the killing effect of lowtemperature air plasma(LTAP)on extended-spectrum beta-lactamase-producing Escherichia coli and high level gentamycin resistance enterococci under two simulated environments in vitro.The results showed that the survival rate of these two kinds of bacteria decreased to less than20%after being treated by LTAP in different environments for 5 min.A comparison of the LTAP treatments showed that the killing efficacy of the two kinds of bacteria in the early stage(0-1 min)was up to 50%.Moreover,the results of transmission electron microscopy,reactive nitrogen species measurement,and a temperature test indicated that the bactericidal effect of the LTAP treatment on the two kinds of bacteria worked through the destruction of the ribosome and other organelles inside the bacteria,rather than the thermal effect,to achieve sterilization.
基金supported by Key Project of Science and Technology Commission of Shanghai Municipality(No.13231201903)National Key Technology R&D Program of China(No.2011BAJ07B04)
文摘The destruction of gaseous styrene was studied using a low-temperature plasma induced by tubular multilayer dielectric barrier discharge(DBD).The results indicate that the applied voltage,gas flow rate,inlet styrene concentration and reactor configuration play important roles in styrene removal efficiency (ηstyrene) and energy yield(EY).Values of ηstyrene and EY reached 96%and 15567 mg/kWh when the applied voltage,gas flow rate,inlet styrene concentration and layers of quartz tubes were set at 10.8 kV,5.0 m/s,229 mg/m^3 and 5 layers,respectively.A qualitative analysis of the byproducts and a detailed discussion of the reaction mechanism are also presented.The results could facilitate industrial applications of the new DBD reactor for waste gas treatment.
基金supported by National Natural Science Foundation of China(Nos.10675121,10705028 and 10605025)National Basic Research Program of China(No.2008CB717800)
文摘Continuous emission spectrum measurement is applied for the inconvenient diagnos- tics of low-temperature collisional plasmas. According to the physical mechanism of continuous emission, a simplified model is presented to analyze the spectrum in low temperature plasma. The validity of this model is discussed in a wide range of discharge parameters, including electron tem- perature and ionization degree. Through the simplified model, the continuous emission spectrum in a collisional argon internal inductively coupled plasma is experimentally measured to determine the electron temperature distribution for different gas pressures and radio-frequency powers. The inverse Abel transform is also applied for a better spatially resoluted results. Meanwhile, the result of the continuous emission spectrum measurement is compared to that of the electrostatic double probes, which indicates the effectiveness of this method.
基金supported by National Natural Science Foundation of China (No. 50374054)the Natural Science Foundation of Shanxi Province (No. 20031050)
文摘TiN/Ti multi-permeating alloying layer has been formed on the low carbon steel by means of the double glow-discharge plasma surface alloying technique and hollow-cathode effect. The alloying layer was detected by axiovert 25 CA optical microscope with computer analyzing software (LEC), GDA-2 glow discharge spectroscopy (GDS), X-ray diffraction (XRD) and galvanochemical method. The results showed that the thickness of TiN/Ti multi-permeating alloying layer was about 10μm, the content of Ti on the surface was up to 63.48 wt% and the content of N was up to 12.46 wt%. The atom Ti and N concentrations changed gradually across the depth of the alloying layer and the preferred orientation of TiN/Ti alloying layer was crystal surface (200). The multi-permeating alloying layer and substrate were combined through metallurgy. The surface appearances of the multi-permeating alloying layer were uniform and of a compact cellular structure. The hardness of the surface was about 1600-3000 HV0.1. The corrosion resistance of the permeating TiN/Ti alloying layer in 0.5 mol/L H2SO4 solution was greatly increased and the corrosion rate was only 0.3082 g/m^2. h.
基金supported by National Natural Science Foundation of China(No.51176001)
文摘Ignition is a key system in pulse detonation engines (PDE). As advanced ignition methods, nanosecond pulse discharge low-temperature plasma ignition is used in some combustion systems, and continuous alternating current (AC) driven low-temperature plasma using dielectric barrier discharge (DBD) is used for the combustion assistant. However, continuous AC driven plasmas cannot be used for ignition in pulse detonation engines. In this paper, experimental and numerical studies of pneumatic valve PDE using an AC driven low-temperature plasma igniter were described. The pneumatic valve was jointly designed with the low-temperature plasma igniter, and the numerical simulation of the cold-state flow field in the pneumatic valve showed that a complex flow in the discharge area, along with low speed, was beneficial for successful ignition. In the experiments ethylene was used as the fuel and air as oxidizing agent, ignition by an AC driven low-temperature plasma achieved multi-cycle intermittent detonation combustion on a PDE, the working frequency of the PDE reached 15 Hz and the peak pressure of the detonation wave was approximately 2.0 MPa. The experimental verifications of the feasibility in PDE ignition expanded the application field of AC driven low-temperature plasma.
基金National Natural Science Foundation of China(Grant Nos.11575121,11275133,and 11575055)the National Magnetic Confinement Fusion Program of China(Grant No.2014GB125004).
文摘The interaction between the supersonic molecular beam(SMB)and the low-temperature plasma is a critical issue for the diagnosis and fueling in the Tokamak device.In this work,the interaction process between the argon SMB and the argon plasma is studied by a high-speed camera based on the Linear Experimental Advanced Device(LEAD)in Southwestern Institute of Physics,China.It is found that the high-density SMB can extinct the plasma temporarily and change the distribution of the plasma density significantly,while the low-density SMB can hardly affect the distribution of plasma density.This can be used as an effective diagnostic technique to study the evolution of plasma density in the interaction between the SMB and plasma.Moreover,the related simulation based on this experiment is carried out to better understand the evolution of electron density and ion density in the interaction.The simulation results can be used to analyze and explain the experimental results well.
文摘In this study, a low-temperature annealed ohmic contact process was proposed on AlGaN/GaN heterostructure field effect transistors (HFETs) with the assistance of inductively coupled plasma (ICP) surface treatment. The effect of ICP treatment process on the 2DEG channel as well as the formation mechanism of the low annealing temperature ohmic contact was investigated. An appropriate residual AlGaN thickness and a plasma-induced damage are considered to contribute to the low-temperature annealed ohmic contact. By using a single Al layer to replace the conventional Ti/Al stacks, ohmic contact with a contact resistance of 0.35 Ω.mm was obtained when annealed at 575 ℃ for 3 min. Good ohmic contact was also obtained by annealing at 500 ℃ for 20 rain.
基金We would like to thank Mr Chuankai Xia and Dr Chunjun Yang for providing Trichophyton rubrumA portion of this work(ESR measurement)was performed with assistant of Dr Wei Tong on the Steady High Magnetic Field Facilities,High Magnetic Field Laboratory,CASThis work is supported by National Natural Science Foundation of China(Nos.11635013 and 11775272).
文摘Fungal infection of human nails,or onychomycosis,affects 10%of the world's adult population,but current therapies have various drawbacks.In this work,we employed a self-made low-temperature plasma(LTP)device,namely,an atmospheric-pressure plasma jet(APPJ)device to treat the nails infected with Trichophyton rubrum(T.rubrum)with the aid of persulfate solution.We found that persulfate solution had a promoting effect on plasma treatment of onychomycosis.With addition of sodium persulfate,the APPJ therapy could cure onychomycosis after several times of treatment.As such,this work has demonstrated a novel and effective approach which makes good use of LTP technique in the treatment of onychomycosis.
文摘ABBAS, Ghasemizad (6): 506 ABBASI, Vahid (6): 586 ABDELMALEK, Fatiha (9): 915 ABDOLAHI, Z. (1): 37 ABHANGI, Mitul (2): 166 ADDOU, Ahmed (9): 915 AFZAL, H. (9): 900 AGAH, K. Mikaili (5): 485 AHMAD, M. A. (9): 881 AHMAD. R. (7): 666AI, Qi (8): 791 AJAI KUMAR, (3): 204 ALAGOZ, B. B. (10): 1012 ALAGOZ, S. (10): 1012 ALISOY, G. T. (10): 1012
文摘International Symposium on Plasma Chemistry (ISPC) is the most influencial in- ternational symposium on science and technology research of low-temperature plasma, especially in the fields related to materials processing. People can be rightly informed of the current devel- oping trend of this field from the contents of these symposia. This paper will introduce briefly a general overview of the 15th ISPC. As viewed from the number of papers and their contents, there is still abundant research on thermal plasma, and the needs fOr micro-electronic technology and high performance films have driven forward continuous and intensive development of the research on low-pressure, non-equilibrium plasmas, while the research on normal pressure, non-equilibrium plasma has become a new highlight in this field.